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ABSTRACT

The work described in this dissertation can be divided into two parts. The first

part is an investigation of the transient behavior and stability property of a phase

conjugate resonator (PCR) below threshold. The second part is an experimental and

theoretical study of the PCR's spatiotemporal dynamics above threshold.

The time-dependent coupled wave equations for four-wave mixing (FWM) in a

photorefractive crystal, with two distinct interaction regions caused by feedback from

an ordinary mirror, was used to model the transient dynamics of a PCR below thresh-

old. Analytical expressions of the steady state cavity's fields for the case of nonde-

pleted pumps and an absorption free medium were derived and used to determine the

self-oscillation conditions. The solutions, through simple frequency domain transfor-

mation techniques, were used to define the PCR's transfer function and analyse its

stability.

Taking into account pump depletion and medium absorption, the transient buildup

and decay times of the cavity's fields as well as the specularly reflected and phase

conjugate reflected intensities were numerically calculated as functions of a number

of system parameters such as the coupling parameter and the pump and probe ratios.

General trends were unveiled and discussed in view of the possible use of the PCR in

image storage or processing architectures. Experimental results for the buildup and

decay times confirmed qualitatively the predicted behavior.

Experiments were carried out above threshold to study the spatiotemporal dynam-

ics of the PCR as a function of the Bragg detuning achieved by misaligning one of the

two pump beams and of the degree of transverse confinement controlled by varying
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the resonator'sFresnelnumber. The temporal aspectsof the beam'scomplexity were

studied by local intensity time series,powerspectra,and reconstructedpseudophase

portraits. An irregular time serieswasidentified asdeterministic chaoshaving a cor-

relation dimensionof 5.2and a Kolmogoroventropy of 0.16s-1. Experimental results

varying both control parametersrevealedthe presenceof two distinct frequenciesin

the power spectra in someregionsof the parameterspace. The existenceof optical

vortices in the wavefrontwereidentified by interferometry. The spatial complexity of

the beam was studied in terms of the spatial distributions of optical vortices, their

trajectories and their relationship to the beam'sspatial coherence.

The transversedynamicsand the spatiotemporal instabilities were also described

by modeling the three dimensionalcoupledwaveequationsin photorefractiveFWM,

using a truncated modal expansionapproach. Numerical solutionsof the model re-

vealed the presenceand motion of optical vortices in the wavefront. Simulations

using the Bragg detuning asa control parametershowedthat optical vorticesappear

as long asa largeenoughmodulation of the wavefrontis brought about by local gain

enhancementresulting from the small misalignmentof one of the pump beamsfrom

the Bragg angle. Powerspectra of simulated time seriesalso contain two distinct

frequenciesfor a certain rangeof the off-Bragg parameter. Maps of the spatial cor-

relation index werefound to be templatesof the correspondingmapsof the vortices'

trajectories, indicating that the dynamicsmay be defect-mediated.
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Chapter 1

Introduction

1.1 Background

Optical feedback has been widely used in image processing since the late 1970s.

Its applications include image restoration and recovery, pattern recognition, and the

implementation of optical associative memory. Historically, optical feedback in ana-

log processors was first proposed to extend their range of optical operations and to

increase their performance and accuracy. Systems with passive coherent feedback

have been demonstrated in spatial filtering, computing the solutions of differential

equations, image restoration, and the implementation of nonlinear operation [1]. Yet,

the performance of these passive feedback systems is limited by the cavity losses and

by the accumulation of phase errors in each round trip.

Theorectical work on optical feedback suggested that fast analog optical devices

with feedback can implement slowly converging iterative algorithms [2, 3]. Itera-

tive algorithms are often needed in problems such as image restoration and recovery

as well as in recognition and associative recall. Efficient optical implementations of

these algorithms, however, require active feedback with a regenerative feedback loop

in which the signal energy and its phase after each iteration can be restored. In the

feedback loop, to amplify the light, two type of gain devices have been experimen-
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tally demonstrated in all-optical systems: dye amplification [4, 5] and photorefractive

amplification [6, 7].

Amplified phase conjugation via four-wave mixing (FWM) with two antiparallel

pump beams in a photorefractive medium can not only compensate for the cavity

losses, but also cancel the aberrations and phase distortions acquired in each round

trip. One advantage of photorefractive nonlinearities over other nonlinear mechanisms

is that efficient beam interactions and large gain coefficients can now be achieved

with a few tens of milliwatts of laser power in materials such as bismuth silicon oxide

Bi12SiO2o. Low-power cw phase conjugate resonator (PCR) oscillations were recently

demonstrated using a barium titanate BaTiOa crystal as a phase conjugate mirror

(PCM) [81.

Since the successful demonstration of the photorefractive oscillators, a variety of

all-optical architectures was proposed for the realization of optical neural comput-

ers [9, 10, 11]. Most of the systems demonstrated so far are dealing with associative

recall in which a partial information input can address the holographically stored

images. The image having the highest correlation peak is selected and reconstructed.

The PCMs in the systems are used to provide optical feedback, thresholding and gain,

the three essential building blocks of a neural network system [12, 13, 14].

About a quarter of a century ago, an optical phenomenon now known as the

photoreffactive effect was discovered in lithium niobate LiNbOa and called at that

time the "optical damage". The undesirable optical damage in nonlinear and electro-

optical crystals turned out to be an advantage when using these materials as holo-

graphic optical memories. However, the interest in holographic memory in these

media quickly declined because the stored information was being erased during the

read-out process or lost subsequently after the pumps are turned off. For a while, as

the basic understanding of the origin of the effect and its potential use in eliminating

wavefront distortion became known, photorefractive wave mixing and phase conju-

gation has grown rapidly into a sub-discipline in the field of nonlinear optics. In the

middle 19708, the science of the photorefractive effect became mature. More knowl-

edge of the electro-optic media and their characteristic properties was available. The
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previously unwanted degradation of optical memories was recognized as exactly what

is needed for real time holography. Up until a few years ago, most of the research

in that field was concerned with the steady-state behavior of wave mixing in pho-

torefractive media and its applications [15, 16]. Recently, however, there has been an

increasing interest in the dynamics of these processes. As more practical devices are

built exploiting photorefractive phase conjugation, we would like to know how these

systems respond to the temporal variations of any of their parameters. Knowledge

of the dynamical behaviors of such systems makes it possible to design devices and

predict their performance. Also of interest, even for steady-state applications, is the

stability of various wave-mixing schemes. For a device based on these principles, one

would like to predict if the system will be stable for the ranges of parameter values

over which the desired operations must be performed.

The dynamics of wave mixing in photorefractive media were first considered in

early theorectical works of the transient behavior of two-wave mixing (TWM) [17].

They showed, for example, how the system approaches the steady state when only

one of the input beams is present and the other is abruptly turned on. Later work

examined the stability of photorefractive FWM processes [18, 19]. In addition, many

groups have recently reported observations of temporal instabilities and chaos in

photorefractive devices such as self-pumped PCMs [20, 21, 22], ring phase conjuga-

tors [23, 24], mutually pumped phase conjugators [25, 26], and PCRs [27, 28]. Several

models have been put forward to explain the dynamics of optical phase conjugation

found in photorefractive crystals [29, 30, 31, 32] and devices [33, 34, 35]. Different

mechanisms have been suggested to explain the temporal photorefractive instabilities.

In the model of reference [22], for example, the chaotic behavior of a photorefractive

PCM in a FWM geometry is shown to be caused by the existence of multiple inter-

action regions in the crystal. Instabilities also arise in PCMs having only a single

grating and a single interaction region [31]. Here, the factor leading to the chaotic

behavior is the presence of an external electric field causing a shift in the optical fre-

quency of the phase conjugate wave (PCW). A more recent model [32] even predicts

a chaotic behavior in the standard FWM geometry with a single interaction region
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and no external electric field if two gratings, transmission and reflection, of similar

strength take part in the process. In ref. [35], two coupled ring cavities provide a

competition between nonlinear gain and loss which results in nonsteady oscillating

beams. It is thought that the competition for energy between different cavities re-

sembles the competition for energy between different channels inside the self-pumped

PCM [21] when it becomes unstable.

Thus far, all these models are based on the well-known one dimensional coupled

wave theory [36]. Therefore, they are incapable of describing the dynamics in the

transverse plane observed in experiments such as those reported in refs. [27, 28].

Besides, effects such as strong light scattering (fanning) in the crystals, or various

spatial effects of diffractions in resonators, all of which are found in real situations,

result in non-uniform gain of the beam profiles. These kinds of considerations will

require an extension of the one dimensional framework to a two or three dimensional

framework in the coupled-wave theory. Indeed, the geometry of the self-pumped

PCM has been considered in a three dimensional theory [37]. Furthermore, finite

gaussian beams have recently been used to study the beam profile deformation in

photorefractive TWM and FWM in a two dimensional framework [38]. These studies

have been dealing with the steady-state aspect of the transverse beam profiles in

photorefractive media. Yet, the transverse dynamics of nonlinear optical system is

becoming an increasingly important topic of research [39].

1.2 Dissertation outline

In this thesis, the study of the nonlinear dynamics in a PCR has been divided into

two parts. In the first part, we will investigate the transieni behavior and stability

property of a PCR below threshold. In the second part, we will study experimentally

and theoretically the PCR's spatiotemporal dynamics above threshold.

In chapter 2, we will present the model and the steady state analysis of a PCR

below threshold based on time-dependent coupled wave equations for FWM in a
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photorefractive crystal with two distinct interaction regions caused by feedback from

a slightly tilted ordinary mirror. The steady state equations for the cavity's field,

taking into account nondepleted pumps and absorption free medium, will first be

solved. The analytic solutions are used to discuss the threshold conditions. We also

find the PCR's transfer function by applying simple frequency domain transformation

techniques to the steady state equations. The transfer function is used to analyse the

stability of the PCR.

In chapter 3, the study will be extended to the transient regime of the PCR. We

will first apply a numerical scheme for integrating the coupled wave equations using

an adiabatic elimination process. We calculate the cavity's buildup and decay times

as well as the specularly reflected and phase conjugate reflected intensities as func-

tions of a number of system parameters. Numerical results indicate that the cavity

buildup and decay times can be tailored by varying several of the system parameters

to assess the possible use of the PCR as an image processing element. Experimental

measurements are shown to qualitatively confirm the numerical simulations.

In chapter 4, we will give a brief introduction to some of the terminlogy and

methods of nonlinear and chaotic dynamics, which are applied to the analysis of

experimental time series data and to the beam's spatial complexity in the dynamics

of PCR above threshold.

In chapter 5, we will present experimental results for the dynamics of PCR above

threshold. We study by experiments some aspects of the spatiotemporal behaviors of

the PCR as a function of the resonator's Fresnel number by varying one of the two

apertures inside the cavity. Temporal aspects of the beam's complexity will be studied

analysing the local intensity time series, power spectra, and embedded phase space

portraits. A range of parameters is found for which the time series exhibit chaotic

variations. For the spatial aspects of the beam's complexity, we will give evidence for

the presence of wavefront dislocations or vortices in the optical field by using video

recording and interferometry. A rich variety of defect movements are recorded and

analysed. The spatial complexity is characterized by the number of optical vortices

and their variety of movements as well as their relationship with the beam's spatial
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coherence.

In chapter 6, we will present and test a model based on a truncated modal expan-

sion of the cavity modes, to investigate the spatiotemporal dynamics of the PCR. We

find the optical vortices in the optical field's wavefront in the numerical solutions. Nu-

merical calculations are performed using the Bragg detuning, achieved by misaligning

one of two pump beams as a control parameter. Numerical results indicate that the

loss of temporal coherence and the onset of temporal chaos in the local intensity fluc-

tuations are correlated to the loss of spatial confinement of the vortices' trajectories

and the spatial coherence. The validity of the model is verified by comparison with

experimental data.

In chapter 7, a conclusion and a summary for this work are given. Some possible

future investigations are suggested.

1.3 The photorefractive effect, wave mixing and real time

holography

In the remainder of this chapter, we begin a brief introduction to the photorefrac-

tive effect, wave mixing and phase conjugation, and then go on to the transients of

the PCR and the steady state analysis in the next chapter.

The photorefractive effect is a phenomenon in which the local index of refraction

is changed by a spatially varying light intensity. The effect has been observed in

crystals such as lithium niobate LiNbO3, barium titanate BaTiO3 and strontium

barium niobate SBN as well as in cubic crystals of the sillenite family such as bismuth

silicon oxide BSO.

Suppose that we illuminate a photorefractive crystal with two coherent plane elec-

tromagnetic waves as in fig. 1.1a. The waves will interfere with each other and pro-

duce a spatially varying (sinusoidal) light intensity pattern inside the crystal. Charge

carriers are optically excited into the conduction band in the bright regions of the

6
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beam 4
crystal

14(X) II(X)

I(x)

p(x)
J |

Esc(x) ::_,

(a) (b)

Figure 1.1: Pictorial illustration of the formation of a phase hologram in electro-

optic crystals via the photorefractive effect. (a) Two coherent electromagnetic plane

waves write a sinusodial grating inside the crystal, (b) Spatial variations of the light

intensity I(x), charge carrier distribution p(x), space-charge field E(x) and refractive
index n(x). After Hall et al. [15]
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interference pattern and move by drift (due to any internal and/or externally applied

electric fields) and diffusion into the dark regions, where they are trapped. Thus,

this sinusoidally varying space charge distribution creates a static, spatially periodic

electric field E(x) inside the crystal as shown in fig. 1.1b, according to Poisson's

equation:

V. E(z)= (1.1)

Here p(x) is the charge density, e is the dc dielectric constant. The electric field E(x)

alters the crystal lattice and locally modulates the crystal's refractive index n(x) via

the linear electro-optic effect, generating a phase diffraction grating. (See fig. 1.1b).

The amplitude An(x) of the change in index of refraction is [40]

An(x) = -(n3reH/2)E(x). (1.2)

Here r_i_ is the effective Pockels coefficient of the crystal. (Pockels coefficients are lin-

ear combinations of elements of the crystal's third rank electro-optic tensor 7_ijk [40].)

Crystals having large Pockels coefficients such as BaTiO3 and SBN can give rise to a

significant photorefractive nonlinearity.

In a seminal series of papers, N. V. Kukhtarev et al. [41, 42, 43] showed that this

refractive index grating interacts with the light waves and couples them together, so

that their intensities I, and/4 and their phases ¢1 and ¢4 change as the light waves

propagate through the crystal:

dI, _ I1 I4
dz Re(%) I1 -t- 14

dI4 I, I4

dz - Re(%) 11 -q-14

1 14
dz 2 Im(%) 11 -4- I4'

d¢4 1 I,

dz - _Im(%) I1 -4- 14"
(1.3)

Here a is the absorption coefficient of the crystal, and 70 is the coupling strength

(see eq. B.54), which is primarily determined by the crystal's Pockels coefficients,
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dielectric constant and interacting geometry. In the absence of any external fields

and if the charge migration in the crystal is dominated by diffusion, the resulting

index grating will be shifted by 90 ° with respect to the interference pattern, as shown

in fig. 1.1b, and the coupling strength "_o will be purely real.

It is the occurrence of the phase shift between the index grating and the interfer-

ence pattern that makes possible an asymmetric transfer of energy from one beam

to the other. This two-beam coupling phenomenon is known as two wave mixing.

According to equation 1.3, if the real part of the coupling strength, Re(_'o), is greater

than zero (it depends on the interaction geometry and the sign of the charge of the

charge carrier), the intensity/4 will grow with propagation while I1 will drop. Also,

for purely real 3'o, the phases of both beams remain unchanged as they travel through

the crystal.

Suppose now that a third weak beam (beam 2) is incident to the crystal, in a

direction opposite to that of beam 1 as shown in fig. 1.2. This beam will be diffracted

by the phase grating into the direction opposite to that of beam 4. It can be shown

that this diffracted beam (beam 3) is the phase conjugate of beam 4. To see what

this means physically, let the beam 4 amplitude be written as

1 [A4(r)ei(_._._wt ) J- A,4(F)e_i(_.F_wt)] ' (1.4)E4( ,t) =

The phase conjugate wave (PCW) is obtained by taking the complex conjugate of

the spatial part of the wave in eq. 1.4:

1 [A,4(r)ei(_g._._,_t)+ A4(r)e_i(_g.e._,_t)], (1.5)Ep_(r,t) =

which can be rewritten as

Epc(r,t) = _[A*4(r)e -'(g'r+_t) + A4(r)ei(g'+'+_0], (1.6)

which is the time reversed version of the wave in eq. 1.4.

This generation of a time-reversal copy of the probe wave is called optical phase

conjugation. A photorefractive crystal employed to produce such a phase conjugate
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A 4 A2

Figure 1.2: Schematic diagram of the four-wave mixing. Beam 1 and beam 4 write a

phase grating inside the crystal. Beam 2, counterpropagating to beam 1, is incident

on the crystal and diffracted into the direction opposite to that of beam 4. The

diffracted beam, beam 3, is a phase conjugate replica of beam 4.

10



CHAPTER 1. INTRODUCTION

wave back to its source is called a "phase conjugate mirror". The process we just

described involves four beams interacting and is referred to as "four-wave mixing".

H. Kogelnik, more than 25 years ago, demonstrated using conventional holography

that a distorted image could be undistorted by first producing its phase conjugate

replica and then sending it backward through the original distorter [44]. In conven-

tional holography, this involves a two-step procedure in which a photographic plate is

first used to store the interference pattern between the incoming distorted image and

a reference wave. This hologram is developed and repositioned exactly in its original

place. The hologram is then read out by a wave propagating in a direction opposite

to that of the original reference wave and deflects the reading wave to produce the

PCW.

Now, with the process of photorefractive FWM, the photorefractive crystal re-

places the photographic plate to store the hologram which is being written by an

image-bearing beam and a coherent reference beam. At the same time, the hologram

can be read out by a reading beam incident at the Bragg angle inside the crystal.

The simultaneous write and read processes eliminate the developing and fixing steps.

So the FWM gives us a new method of storing dynamic holograms in real time image

processing, which is often named "real-time holography".

11



Chapter 2

The P CR model: steady state

analysis

2.1 Introduction

Phase conjugate resonators (PCRs) are resonators in which at least one of the

mirrors is a phase conjugate mirror (PCM). The PCM, which acts both as a phase

conjugator and as a gain element, confers to the resonator some unique properties

(e.g. phase healing, transverse mode degeneracy, etc.) [45]. A number of applications

of the PCR to image processing have been demonstrated or proposed [7, 46, 9, 11].

A class of these applications makes use of the regenerative feedback of the PCR to

synthesize unusual transfer functions, perform nonlinear operations, or implement

iterative algorithms [7, 46]. Another type of problem which has motivated this study

more directly involves the implementation of discrete time algorithms for distributed

parameter control systems [47]. A PCR could be used as a real-time holographic

element for temporal image storage and delay operations. In all these, the PCR is

below threshold (for self-oscillation) and functions as a regenerative amplifier.

In these applications, the way in which the PCR responds to time-varying signals is

important for understanding the operation of the device. Therefore a theory is needed

12
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to describe the transient effects in the PCR (such a theory is described in 2.2). Phase

conjugate Fabry-Perot cavities have recently been studied both in the steady state

case [48] and in the limit of a PCM with a fast response such as a Kerr material [49].

Fast response means that the time scale associated with the buildup of the polarization

field in the medium is much shorter than other time scales in the problem. Thus,

there is no difficulty in coupling the time dynamics of the material with the time

dynamics of the optical field in a self-consistent manner. However, this is not the

case in sluggish photorefractive materials such as in BaTi03 because the time scale of

the grating formation is not shorter than other time scales in the problem. Equations

for the transient behavior of the PCR with a sluggish medium must, therefore, include

the material equations.

In section 2.3, we first solve the steady state equations for the PCR, for the con-

ditions of nondepleted pumps and an absorption free medium. An analytic solution

can be obtained and used to describe the threshold conditions of the PCR. In the

quasi-steady state limit for a slow material, the steady state solution can also be used

to derive a transfer function for the PCR (section 2.4). The transfer function is then

used to analyse the transient response if there are some system operative ranges that

could lead to instability of the device.

2.2 Model of the PCR below threshold

In this section, we develop a model for a phase conjugate Fabry-Perot resonator

with a PCM consisting of a sluggish photorefractive material. The medium is modeled

by the standard Kukhtarev theory. Equations for the fields in the cavity and in the

medium, under the plane wave theory, are derived.

2.2.1 The Cavity

The geometry of the PCR is sketched in Figure 2.1. It consists of a conventional

(dielectric) mirror and an externally pumped PCM . The input beam AIN may make

13
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M /
1 t

rm, tm rm, tm

A41 _1

PCM

z=-L A1/ z=O z=d

/

Figure 2.1: Schematic diagram of a phase conjugate resonator using an externally

pumped phase conjugate mirror (PCM) and a conventional mirror (M). rm, tin, rim, t"

are the reflection and transmission coefficients of the conventional mirror. #1, #2

are the PCM reflectivities at the two interaction regions. The angle of incidence

of the input beam and the distance between the two interaction region are greatly

exagerated

14
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a small angle with the mirror normal so that in general two distinct interaction

regions exist in the PCM. The presence of two distinct gratings can easily be verified

experimentally.

A PCR formed by two PCMs has been investigated by others [50] and proposed

for the holographic storage of images [51]. The only difference between the cavity

of fig. 2.1 and the two-crystal cavity, as shown in figure 2.2, is that, in the two-

crystal set up, the pumps' intensities can be varied independently. In a single-crystal

cavity where the two interaction regions share the same pumps, the steady state PCM

reflectivities #1 and #2 are equal, although they generally grow at different rates.

Within the framework of a plane wave theory, the fields' amplitudes in the cavity

(-L < z _< 0), satisfy the self-consistency equations

A41(z,t ) ----trnAIN(Z,_ ) -_ rtrnA32 (z,_ 2Zc 2L)c

= rmA31 z, t
c c

A31(z,t) : #1 (_ _- z) A;1 (z,t-Ji- 2z) ,

(z)A3:(z,t) = ¢2 t+ A42 z,t + ,

ei_2(L+z), (2.1)

(2.2)

(2.3)

(2.4)

where L is the optical length of the cavity.

The PCM is assumed to be a sluggish photorefractive medium such as BaTiOa.

When the medium response time is much longer than the cavity round trip time, all

the temporal delays in equations 2.1 to 2.4 can be discarded.

The specularly reflected output and the phase conjugate output are respectively

AR(-L,t) = rmAiN(-L,t) + t_A32(O,t)e i_L, (2.5)

and

Ac(-L,t) = t_A31(O,t)e i_L. (2.6)

15
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_1,1
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/

Beam Splitter

/_A21 AT

AIN

_2

PCM2

/_A22

A21

/

Figure 2.2: Two-crystal cavity comparable to the cavity with two interaction regions

of figure 2.1.
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2.2.2 The Four-wave mixing (FWM) equations

The standard model used to describe photorefractive wave mixing is based on the

coupled wave formalism originally developed in the late 1960's by Kogelnik [36], and

on the model due to Kukhtarev et al. [42] which describes how the index grating forms

in the photorefractive medium. We first outline the coupled wave equations for the

photorefractive FWM (the coupled wave equations are derived in Appendix A) and

then combine them with Kukhtarev's equations to give a set of coupled partial differ-

ential equations which completely describe both the temporal and spatial variations

of the fields in the FWM process.

The beams in the PCM are treated as plane waves with slowly varying envelopes

(SVE approximation); i.e., the temporal and spatial rates of change of the fields and

material polarization amplitudes are slow compared to the light frequency and coarse

compared to its wavelength. The pump and input beams have all the same frequency

and the same polarization state.

With these assumptions, the wave equation in the medium ( 0 < z _< d ) leads to

the following standard coupled equations (see Appendix A) (the subscript j = 1 or 2

refers to either one of the two interaction regions):

o)+ -_ Alj(z,t)= -Qj(z,t)A4j(z,t)-ajAlj(z,t),

o)_-Ot A;j(z,t) = -Qj(z,t)A;j(z,t) + ajA;j(z,t),

0
] A3j(z,t) = Qj(z,t)A2j(z,t) + c_jAaj(z,t),v-Or
/

+ -_j A4j(z,t ) = Qj(z,t)A*_j(z,t) - ajA4j(z,t),

(2.7)

(2.8)

(2.9)

(2.10)

where c_j is the linear amplitude absorption coefficient, Qj is the complex amplitude

of the material grating and v is the speed of light in the medium. The angular

dependence of the spatial derivatives has been neglected, which is consistent with the

assumption of a small angle between the pump beams and the cavity axis.

17
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If the medium response time is much longer than the transit time through the

PCM, as is assumed here, the temporal derivatives can be dropped from the LHS of

equations 2.7- 2.10. The equations then describe a quasi steady state situation in

which the fields' amplitudes follow adiabatically the medium changes.

Futhermore, it was assumed that only one index grating is operative in both

regions. For example, with a geometry utilizing the extraordinary polarization to

take advantage of the large electro-optic coefficient of BaTiO3, the dominant grating

is the one formed by the interference of A1 with A4 and A_ with Aa. Its wave number

is _Cl-/_4 = _ca- k2, where kj is the wave vector of beam j.

The dynamics of the grating formation can be derived from the Kukhtarev equa-

tions and has the following form (see Appendix B where the details of the Kukhtarev

theory and its underlying assumptions are summarized):

O (2.11)
"rj-_Qj(z,t) = Qoj(z) - Qj(z,t), j = 1,2,

where Tj is a possibly complex time constant and Qoj is the steady state grating.

These two quantities can be evaluated from the parameters in the Kukhtarev model

as shown in section 2.2.3. From Appendix B, the steady state grating has the form

A_j(z)A*4j(z) + A_j(z)Azj(z)

Q oj (Z ) = "7o3 Ioj
j = 1,2, (2.12)

where /oj is the local average intensity in region j : Ioj(z,t) = E[Akj(z,t)l _. The

second factor in the RHS of equation 2.12 is the modulation depth of the interference

fringes of beam A1 with A4 and beam A2 with Aa. "roj is the coupling coefficient and

has the form

(2.13)
7oj - 4c

where r, H is an effective Pockels coefficient which depends on the geometry and the

18
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beams' polarization, and E_c is the complex amplitude of the space-charge field mod-

ulation (see Appendix B). The effective Pockels coefficient r_jj for barium titanate

(point group 4ram)can be written [7] as

4

Fell : noF13 COS _, (2.14)

for ordinary polarized beams, and as

= -- COSr,,, 2 nora3( 20-c°s2/3)+4nenor4zsin2/3+n4r33(cos2/3+cos20 cos/3,

(2.15)

for extraordinary polarized beams, where no and ne are the respective ordinary and

extraordinary indices of refraction at wavelength A = 27rc/w, rij are the elements of

the linear electro-optic tensor (Pockels coefficients) [40], and 0 and/3 are the angles

inside the crystal defined as in Figure 2.3.

If the small angular difference for the beams interacting in regions 1 and 2 is

neglected, 3'0 and o have the same values in both interaction regions.

2.2.3 The material's constants

According to the Kukhtarev band transport model, a mathematical description of

the grating formation process is given by the equations

where

Ot

O_2n ON +D

Ot Ot q
_ y

- (SI +/3)(ND -- N+D)--3"RnN +

3 = q#nE, - kBTpVn + pI_c

(continuity), (2.16)

(rate equation),

(current equation),

(Poisson's law),

(2.17)

(2.18)

(2.19)

19
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£;-axis

K

Beam 4

/.
O

Beam I

Figure 2.3: Geometrical configuration of two-wave mixing in a photorefractive mate-
rial. K is the wave vector of the induced grating; _ is the optical axis of the crystal;

20 is the angle between two beams inside the crystal; fl is the angle of K with the

&axis.
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is the free charge carrier (single species)

number density,

is the total number density of the dopant (single species)

(Fe for example),

is the number density of the ionized donors (traps)

(Fe 3+ for example),

is the number density of the acceptors,

is the number density of neutral (filled)

donors (Fe 2+ for example),

is the current density,

is the photoionization cross section,

is the intensity of the optical wave,

is the recombination rate coefficient,

is the mobility of the charge carriers,

is the total local electric field,

as Boltzmann's constant,

is the temperature,

is the photovoltaic coefficient,

as the charge of the charge carriers, and

as the static dielectric constant.

After linearization in the grating modulation index and in the steady state limit,

equations (2.16)-(2.19) can be solved and the steady state space-charge field is found

to be (see Appendix B):

[(Eo+ Ep)
E;c = -iEq [-_o+i-_q + ED)J ' (2.20)

where Eo is the external applied field, Ev, ED and Eq are characteristic fields of the

material:

p/o
E_ =

qtmo

kBT[K[
E D --

q

(photovoltaic field),

(diffusion field),

(2.21)
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(saturation space charge field).
qNe

Eq clKI

Here Io is the zero order of the light intensity, N: is the effective trap number density,

K is the grating vector and p is the photovoltaic coefficient [52].

With no external field (Eo = 0) and negligible photovoltaic field (Ep ,-_ 0), the

steady state space-charge field is simply given by

-iEqED (2.22)
E;c= Eq + ED"

In this case of a diffusion dominated process, the index grating in equation B.52

leads the light interference fringes by a rr/2 phase shift and the coupling constant

3'0 in equation 2.13 becomes real. The model also predicts a complex response time

constant of the form (see Appendix B)

rg = r_ + i 1, (2.23)
_3 9

where the material response time is

(1+ _)2 + (_] 2
,,E, (2.24)

and the material frequency is

1 (,_)(_-_/-1)

OJ9 ---- _.]2 2"
ra, (1 + ,-D/ + (_)

(2.25)

The various time scales in equations 2.24 and 2.25 are defined by

Td_ --

q#no
(dielectric relaxation time),

T_=(_IKIEo)-' (drift time),

(diffusion time),T_ = (_[KIED) -1

(2.26)

(2.27)

(2.28)
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TR = (7RNA) -1 (recombination time), (2.29)

T, = (SIo)-' (inverse of photoexcitation rate), (2.30)

and the free carrier average density is

SIo(ND- NA)

no = 7RNa (2.31)

All the material constants involved in these relationships are of great interest to the

material physicist whose objective is to make materials with optimal properties [53].

It is apparent that different applications require different material properties. For

instance, in order to demonstrate high speed, low write laser power and long-lived

memory, or large gain, it is necessary to use several different types of materials. It has

been observed that BSO is a fast photorefractive material but of low efficiency due

to a small electro-optic coefficient while BaTiO3 has by far the largest electro-optic

coefficient leading to high diffraction efficiency but with a slow response time. The

research for improving photorefractive materials has a goal to overcome the trade off

between speed and sensitivity as well as to enlarge the materials' performance over

a wider operative range of device exploiting these materials, which is essential to the

new optical computing technologies.

For photorefractive materials, one important attribute of the the grating response

time is its dependence on the total intensity incident on the crystal. The one-species

model of the Kukhtarev theory predicts an inversely linear dependence (7- cx I_-a). In

BaTiO3, this dependence is experimentally found to be sublinear with an exponent

0.5 < x < 1. This behavior can be accounted for by assuming that two different

species of traps take part in the photorefractive process [54]. For our study, it is

however sufficient to use a normalized response time of the form

)1
qlaS ND -- NA Io Io'

which is valid when the recombination time rR is short compared to the other time

scales of the model. This happens to be the case for BaTiO3. In the calculations of
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the next chapter, we used a normalized time scale 7-o = lo 1. This normalized time

scale can be related to the real time scale for a particular material by evaluating the

constant A. Typical numbers for BaTiO3 are given in Ref. [53]:

S(ND - NA)

7a = 5 x lO-Scma/s,

NA "_ 2 x 1016cm -3,

# ,._ 0.5cm2/V.s,

a _ 0.3cm -1,

q = 1.6 x 10-19C,

eo = 8.85 x 10-14Fcm -1.

(2.33)

The relative dielectric constant is given by

eR = ell sin 2/3 + e± cos 2/3, (2.34)

with ql = 4300, e± = 168 and/3 is the angle between the grating wave vector and the

c-axis of the crystal (Figure 2.3). For the experiment we had /3 ,-- 10 °, which gives

eR _ 300. With these numbers, we find A = 1.1 × 10 is cm -2.

In equation 2.32, Io is expressed in number of photons per cm 2 per sec. In the

calculations of the next chapter, the unit of intensity was chosen to be 1 mW/mm 2.

At a wavelength )_ = 0.514#m (photon energy = 3.87 × 10-19j), this corresponds to

a photon flux of 2.58 × 1017s-lcm -2. The normalized time scale used is thus given by

with

to(Normalized) = [Io(in mW/mm2)] -1
T(in see)

- A _ ,
(2.35)

A'- 1.1 x 10 as _ 4.26(s mW/mm2). (2.36)
2.58 x 1017

2.3 Steady-state analysis

The main reason for seeking an analytic steady state solution to the PCR's equa-

tions is that in the quasi steady state case (slow medium such as BaTiO3) such a
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solution can be used (as shown in section 2.4) to define a transfer function from

which the stability of the solution can be analyzed. Furthermore, the steady state

solutions determine the threshold for self-oscillations of the PCR.

2.3.1 Steady-state equations and their solutions

The steady state equations are obtained simply by setting all the time derivatives

equal to zero. At steady state, an analytic solution can easily be found in the case

of nondepleted pumps and negligible absorption, i.e. A](z) = A](O) = A_, A2(z) =

A2(d) = A2, and al,2 = 0. Equations ( 2.7- 2.12) then reduce to

d % . .A33(z) = To [A_A4j(z ) + A_A33(z)] As, (2.37)

A j(z/= To% A:A3j(z/]A; j = 1,2, (2.38)
where

Io _ IA,I_ + IA212. (2.39)

The boundary conditions are, from equations ( 2.1- 2.4),

I '_-- ,A41(0) = tmAig(O) + rmAa2(0)e 'c2L

A42(0) ' " "_' i_-2L= rrn_t.31(U)e c

Aa,(d) = A3;(d) = O.

(2.40)

(2.41)

(2.42)

To solve the steady state equations 2.37 and 2.38, one may proceed as follows.

Multiply equation 2.37 by p = A_/A1 and we have

d "Y°IA_I_ [A*4j(z ) + pA3j(z)] P _ A_ (2.43)
dz (pA3j(z)) - Io ' AI'

d A*4j(z ) = % 1 To ] [A4j(z) + pAaj(z)] , (2.44)
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Adding equations 2.43 and 2.44 and integrating, gives

pA3j(z) + A4j(z ) = [pA3j(O) + A'aj(O)]e "_°z. (2.45)

Substituting this equation into equation 2.43 and 2.44 and integrating, gives, respec-

tively

and

A4J(z)-" IA'I2Io [pA3j(O) + A_j(0)] (e "r°z- 1) + A*aj(O), (2.46)

1&12 [pA3j(O) + A4j(0) ] (e "r°z- 1) + A3j(0).
A3j(z)- lop

(2.47)

Using the boundary conditions 2.42 in equation 2.47, we find

e-_°d - 1 12

a3j(0) = P'e-_od + Rp a'4j(O)' Rp = _.

Substituting this in equation 2.40 and 2.41, we find

(2.48)

e -'v°d -- 1

I * a* /,_ i_-2L (2.49)A41(0) = tmAIN(O) + rmP /-142t, o)e _ ,
e -'_a + Rp

and
e -w°d -- 1

A42(0) = r_mp" a41(O)e i_2L. (2.50)
e -'_d + Rp

Equations 2.49 and 2.50 are combined to give

A41(0)- tmAIN(O) (2.51)
1-¢/ '

with

and

e -w°a - 1 2= 12n 

A2 2
Rp= Z

(feedback parameter), (2.52)

(pump ratio). (2.53)

Using this result in equations 2.46 and 2.47 and making use of the relationship

between A42(0) and A41(0) derived in equations 2.49 and 2.50, we finally find the

steady state fields in the crystal (0 _< z _< d):
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. e "t°(z-d) -_ Rp (tmAiN(O)_* (2.54)
A41(z) = e -'Y°d + Rp t _:_ ) '

A42(z)= r=pe_i__2L(e_°(z-d)+ Rp)(e-_°d- 1)*(tmAzN(O)_
I_-,o_+ n_l_ t 7--5 )' (2.55)

Az1(Z) = p" e'Y°(z-d)- 1 (t__Am(O)]'\ (2.56)
e-_°d + Rp \ 1--8 I '

,. _i__2L(e _°(z-d)- 1)(e -_°d- i)" (tmAlN(O))
A32(z)= rmRp_ I_-_od+ Rpl_ k i _--_ ) (2.57)

The cavity fields and the outputs can then be found by using equations ( 2.54-

2.57) in equations ( 2.1- 2.6).

2.3.2 Threshold for self-oscillation

The PCM steady state reflectivities are defined, from equations 2.3 and 2.4, as

A3j(0) j = 1,2. (2.58)
#j- A,4j(O ),

Using equations ( 2.54- 2.57), we find

e -'_°d -- 1

#1 = #2 = # = p* , (2.59)
e-_od + Rp

and the feedback parameter takes the form

/_= I_,-,,v 12. (2.6o)

If the two interaction regions share the same pumps, they have equal steady state

reflectivity. In a diffusion dominated medium with a stationary grating, the coupling

parameter 7o is real. The phase of the PCM reflectivity is thus simply the sum of

27



CHAPTER 2. THE PCR MODEL: STEADY STATE ANALYSIS

::L

In

0
19

m

Q
rr
19

m_

t-
O
0

19
t_

t-
O_

%d=4.0

3

2

I I I I I Illl

0 -3 -2 -1 0 1
10 10 10 10 10

Pump ratio Rp

Figure 2.4: Steady state PCM reflectivity as a function of the pump ratio for various

values of the coupling parameter
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the phases of the pump beams: Arg[#] = q)l(0)-_- ¢2(d), ¢1(0) = Arg[Al(0)], ¢2(d) =

Arg[a2(d)].

Figure 2.4 shows the magnitude of the PCM reflectivity as a function of the pump

ratio for various values of the coupling constant %d. For the pump ratio Rp << e -_°d,

]#] increases as _p. For Rp >> e -'y°d, t#l drops as 1/_ almost independently of the

coupling constant. Also, the reflectivities all converge to zero as the power of pump 2

becomes much greater than that of pump 1. This is because the index grating written

by pump 1 and the input is erased by the large power of pump 2. Equation 2.60 shows

that the feedback parameter is proportional to I#] 2. Care must be taken, however,

in interpreting this result. It is clear that the steady state solution of equations

( 2.54- 2.57) is valid only below threshold, i.e. /3 < 1. The condition/3 = 1, which

corresponds to a feedback system in which the gain exactly compensates the losses,

defines the threshold for self-oscillations of the PCR (i.e. no external input needed

to establish the cavity fields). Figure 2.5 shows/3 calculated from equation 2.60 with

a mirror reflectivity Ir,_l 2 = 0.95. It is seen that for small coupling (7od _- 1.8), the

resonator is stable for the entire range of pump ratios. For larger coupling constant,

there is a range of pump ratios around Rp ,-_ 0.1 which would have/3 > 1. This is

of course not physical. As one approaches threshold, the cavity fields increase, the

undepleted pump assumption ceases to be valid, saturation takes place and 13remains

equal to unity even if the coupling constant is increased.

2.4 Transfer function of the PCR and its stability analysis

In this section, we develop a method to derive a transfer function of the PCR and

we use it for the analysis of the device's frequency response and possible instabilities.

2.4.1 Frequency domain transformation of the PCR's equations

To derive the transfer function, we begin with the time-dependent FWM equations

( 2.7- 2.11) in section 2.2.2. In the undepleted pumps and negligible absorption
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Figure 2.5: Feedback parameter as a function of the pump ratio for various values

of the coupling parameter. The steady state solution is valid only below threshold:

8<1.
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approximation, they read:

0
T-SiQs(z,t)+ Qs(z,t)

THE PCR MODEL: STEADY STATE ANALYSIS

0

+ -_-_) Aaj(z,t) = Qj(z,t)A2, (2.61)

o).v-Or A4j(z't) = QJ(z't)Al' (2.62)

mlA_j(z,t) + A_A3j(z,t)

=70 Io (2.63)

We define a3j(z,_), fi4j(z,_) and qj(z, Ft) as the complex Fourier transforms (or

double sided Laplace transforms) of Aaj(z, t), A4j(z , t) and Qj(z, t), respectively, i.e.

f(ft) =/+5 F(t)e-iatdt' (2.64)

1 [+_+icf(ft)emtda ' (2.65)F(t) = _ J-_+,c

so that 54(z,_) = a_(z,-_). Equations ( 2.61- 2.63) become

Oz + i a3j(z, a) = qj(z,a)A2,

o _-; a4s(z,a) = qs(z,a)A1,

(1 + i_T)qj(z,f_) = _o[Alfi4j(z,f_) + A_aaj(z,f_)].

Thus, the complex amplitudes of a3j and a4j satisfy

[" 63 ._'_ 3'o Ala:j(z,-_)-t- A_a3j(z,_)

+ z v) a3j(z,_) = 1 + iflr Io A2,

(2.66)

(2.67)

(2.68)

(2.69)

._ % Ala_j(z -fl) + A_a3j(z,_) .63 z_) 1 + i_'r Io-_z a*4j( z' -_ ) = ' AI" (2.70)

For a slow medium, the transit time through the PCM is much shorter than

the medium response time (r >> d/v) and the terms ift/v can thus be neglected.

31



CHAPTER 2. THE PCR MODEL: STEADY STATE ANALYSIS

Equations 2.69 and 2.70 are then identical to the differential equations 2.37 and 2.38

used to derive the steady state solutions if the substitution

7o (2.71)
V - 1 + i_T'

is made. With a slow medium (v >> cavity round trip time), the boundary conditions

for a3 and a4 also have the same form as equations ( 2.40- 2.42). The solutions of

equations 2.69 and 2.70 are thus identical to the solutions of equations 2.37 and 2.38

respectively, with the substitution of equation 2.71.

2.4.2 Transient response and its stability

From the results of the previous section, we can now define a transfer function for

the phase conjugate cavity beam,

H(_t)
a31 (0, _)

m

CtIN(O , _'_)

trap )* e-'_a-1 (2.72)= 1 --_-_) e -'yd + Rp'

with

= I 'l np + np ' (2.73)

where p = A_/A1 and Rp = ]A_/All 2.

From the definition of the complex Fourier transform given in equations 2.64

and 2.65, the system is unstable when the transfer function has poles with negative

imaginary parts. Figures ( 2.6- 2.8) show contour plots (on a log scale) and 3D plots

(on a linear scale) of the transfer function for three different values of the coupling

parameter. The shaded areas outline the region in which /3 > 1 and in which the

definition of a transfer function becomes meaningless. The poles are located along

the boundary/3 = 1.

For a weak coupling parameter, all the poles are above the real axis and the sys-

tem is stable (Figure 2.6). From equation 2.73 and the parameter values given in
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Figure 2.6: (a)Contour plot in the complex plane (log scale) and (b)3D plot (linear

scale) of the transfer function of the PCR with a sluggish medium, in the limit of

negligible absorption and no pump depletion. The relevant parameter values are

7od = 1.0, Rp = 0.1, Rm = 0.95. The shaded region outlines the domain/3 > 1.
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the caption of Figure 2.6, it can be calculated that the intersection of the bound-

ary _ = 1 with the imaginary axis crosses to the lower half plane for %d = 1.87

(Figure 2.7). This is, of course, precisely the coupling parameter needed to reach

threshold for these parameter values, as can be verified in Figure 2.5. At this point,

the resonator self-oscillates and has a stable steady state output. As the coupling

parameter increases further, additional complex conjugate poles may cross the real

axis and become unstable. (Figure 2.8).

2.5 Conclusion

We have presented a model and the steady state analysis of the PCR in the

framework of the plane wave representation. A steady state analysis of the FWM

process of the PCR is performed and analytic solutions are derived in the case of

nondepleted pump, an absorption free medium and real coupling constant. Stability

analysis of the solutions is also discussed with the use of the transfer function in

the frequency domain. We find that dynamic instabilities start to come in when the

resonator self-oscillates, i.e. when the feedback parameter _ = 1.
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Chapter 3

Transient behavior of a PCR:

numerical study

The theory of the photorefractive phase conjugate Fabry-Perot cavity formulated

in chapter 2 was used to find steady state solutions. The analytic results and the

analysis of the stability under quasi steady-state conditions have been presented in

that chapter. For practical applications, it is also crucial to understand the transient

dynamics of the device. In this chapter, the transient regime of a PCR under the

plane wave assumption is studied numerically. In particular we are concerned with

the cavity's response time as a function of the system's parameters. In section 3.1 we

review the time-dependent equations for the waves in a PCR and describe a numerical

method for their solution. In section 3.2 we present the numerical results as functions

of the coupling parameter, the pump ratio, the probe ratio, the dielectric mirror's

reflectivity, and the absorption constant of the medium. The general trends are

discussed in view of the possible use of the system in image processing. In section 3.3

we describe an experimental setup used to study the transient dynamics of a PCR

and discuss the experimental results. A summary of the study is given in section 3.4.
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3.1 A numerical approach

In this section we begin with the time-dependent equations derived in chapter 2,

including the pump depletion and medium absorption. We then apply an adiabatic

elimination method to integrate the partial differential equations separately in the

space and time domains to obtain the final steady state of the cavity fields.

3.1.1 The start of the transients

The time-dependent equations derived in section 2.2.2 for the plane wave model

of four wave mixing in a slow photorefractive medium are (figure 2.1):

and

0 t) -Qj(z,t)A4j(z,t) ajAlj(z,t),
-_zAlj(Z, =

O A*2j(z,t ) = -Qj(z,t)A_j(z,t) + ajA_j(z,t),

_zA3j(z,O t) = Qj(z, t)A2j(z,t) + ajA3j(z,t),

O A4y(Z,t = Q3(z,t)m_j(z,t) - ajA'4j(z,t),

0 z,t)+Qj(z,t)- 70 • •
T--_Qj( io(z,t)[AlJ(z,t)A4j(z, t) + A2J(z't)Aaj(z't)]"

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

The boundary conditions for the cavity fields are:

A4,(O,t) = tmAiN + r_mA32(O,t) ei-_2L,

A42(0, t) = r_A31(O,t) ei-_2L,

A31(d,t) = A32(d,t) = O,

A,,(0, t) = Al_(0,t)= AIo,

A21(d,t) = A22(d,t)= A2o.

(3.6)

(3.7)

(3.8)

(3.9)

(3.1o)
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For the initial state of the PCR, we assume that only the two pump beams A1 and

A2 are present. We further assume that there is no scattered noise so that even if the

cavity is above threshold (gain > loss), self-oscillations do not start spontaneously

without an input beam. Since the interaction between the two pumps is neglected,

their initial spatial distributions in the crystal assume a simple exponential depen-

dence of the form e TM.

The signal beam is then abruptly turned on to a constant value AIN. Since no

interaction takes place yet, it also assumes an exponential distribution:

A41(z,0) : tmA,Ne -oz, (3.11)

A31(z, 0) : A42(z,0): A32(z, 0): 0. (3.12)

After a first short lapse of time, a grating is being formed in region 1, driven by the

interference between A41 and A1 only. The scattering of A2 by this grating produces

a phase conjugate beam Aal. After reflection on the mirror, this beam produces a

probe beam A42 in the region 2. The three beams A42, A1 and A2 in region 2 vary

exponentially in space since there exists no interaction yet, and their interference

triggers the formation of a grating in exactly the same way as in region 1. After a

second lapse of time, this grating generates a phase conjugate beam A32 which adds

up coherently to the input AIN to define the new probe beam A41 in region 1. The

process goes on with the two gratings driving each other's growth and building up

the cavity fields until a steady state is reached.

3.1.2 Adiabatic elimination algorithm

For a slow medium such as BaTiO3, the time derivatives in equations (3.1-3.4)

have been eliminated since the propagation delays in the cavity and in the medium are

short compared with the time needed for grating formation. Under this quasi steady-

state condition, one can regard the field amplitudes inside the crystal as following

the slow grating changes adiabatically. This method was proposed by Heaton et al.
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in [17] for the integration of the time-dependent photorefractive equations separately

in the space and time domain and is known as the adiabatic elimination method. The

numerical recipe includes the following steps [55]. At time tN, Qj(z, tN) modulates

the field amplitudes inside the crystal. The spatial distributions of the fields are

calculated by solving the ordinary differential equations (3.1-3.4) with the boundary

conditions (3.6-3.10), by using a fourth order Runge-Kutta method. The boundary

conditions allow one to separate these equations into two independent sets. First,

equations 3.2 and 3.3 are solved simultaneously with the boundary values A3j (d, tN) =

0; A2j(d, tN) -= m2j(O) -= A2o. The solution of this first set of equations is then used

to find the boundary values A4j(O, tN). These, together with the boundary values

Alj(O, tg) = Au(O) = Alo, are used to solve equations 3.1 and 3.4. All the fields

inside the crystal at tg are then known.

The medium then responds to these fields according to equation 3.5 to produce

a new grating Qj(z, tN+l). A second order Runge-Kutta method is used to integrate

this temporal equation, giving

Qj(z, tN+_) .._ Qj(z, tN) + (AtN/r){7omj(z,tN + AtN/2) -- [Qj(z, tN) + (1/2)K(N)]},

(3.13)

where

K (N) = (AtN/T)[%rnj(z, tN) -- Qj(Z,tN)], (3.14)

and

Alj(z, tn)A*4j(z, tN) + A_j(z,tN)Aaj(z, tN)

mj(z, tN) = Ioj(Z, tN) '
(3.15)

with tN+l = tN q- AtN. The new grating is then used to find the new spatial distribu-

tion of the fields at time tN+l which is again calculated from equations 3.1 and 3.4.

The process is repeated for a fixed number of steps or until a steady state is reached.

For the calculation to be valid, the time step AtN must be small enough compared

to the time constant T(tN) of the grating. Since this constant is a function of the
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intensity incident on the crystal and therefore changes in time, the temporal step

was not taken as a constant but rather each step was chosen equal to 1/10 the

instantaneous time constant 7(tN) of the grating.

Since, according to the standard Kukhtarev model, the grating time constant is

inversely proportional to the total intensity 11oincident on the crystal, we chose a

relative time scale of the form 7 = I_-1 for the calculations. This time scale can

be related to the actual time scale T = AIo I by evaluating the constant A for a

particular material [53]. Typical values of parameters for BaTiOa give A _ 4.3 s

x mW/mm 2 (see section 2.2.3). The time appearing in the graphs discussed in the

next section is normalized to the medium response time with a total incident Io of 1

mW/mm 2 (e.g., _ 4.3s for BaTi03).

3.2 Numerical analysis

In this section, the numerical procedure just discussed is used to find the transient

behaviors of the cavity fields as functions of the system's parameters. Particular

attention is given to the system response time and the PCR's reflectivity because of

their importance in the design of practical devices.

3.2.1 Response curves for the cavity fields

The system's parameters used in this and the following sections are the coupling

parameter %d, the pump ratio Rp = I2/I1, the probe ratio Rs = ItN/(I1 + h), the

input mirror reflectivity Rm = Irm ]2 and the absorption parameter ad. Figures ( 3.1-

3.5) show the results of sample calculations of the temporal evolution of the cavity

field intensity 131(0, t/To). The other fields experience similar growth. The normalized

intensity of the phase conjugate cavity field intensity I31/(I_ + I2) is plotted as a

function of time, for a square pulse input. The length of the pulse was chosen long

enough to allow the PCR to reach a steady state.
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Figure 3.1: Normalized cavity field intensity /Zl/(I1 + 12) showing the response of

the PCR to a square pulse input for various values of the coupling parameter and

R_ = 0.02, R v = 0.3, Rm = 0.95, ad = 0.15. Time is normalized to the response time

To of the medium with Io = lmW/rnm 2. The cavity is above threshold for "/od >_ 2.5.
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Figure 3.1 shows the response for various values of the coupling parameter. The

other parameters are Rs = 0.02, R v = 0.3, Rm = 0.95 and ad = 0.15. Larger values

of the coupling parameter lead to larger cavity fields, as expected, to faster growth

rates and to shorter buildup times. For 7od _" 2.2, the cavity is above threshold and a

self-oscillating field remains in the cavity even after the input has been cut off. This

is consistent with the result of figure 2.5 which indicates that at Rp _,- 3, the cavity

reaches threshold for 7od "_ 2 without absorption.

Figure 3.2 shows the response for various pump ratios. In varying Rp the pump

intensity /1 was maintained constant, and I2 was varied. The other parameters are

",/od = 2, Rs = 0.02, Rm = 0.95 and ad = 0.15. With these parameter values, the

cavity remains below threshold for all values of Rv, as shown in figure 2.5. It is seen

that at first, the steady state cavity field intensity increases with increasing pump

ratios and then drops. This is consistent with the result of figure 2.4 which shows

that the PCM reflectivity also reaches a maximum. The buildup and decay rates

follow similar trends but the total buildup time does not vary much with the pump

ratio.

Figure 3.3 shows the PCR response for various probe ratios. The other parameters

are R v = 0.5, ",/od = 2.5, Rm = 0.95, and ad = 0.15. The steady state cavity intensity

increases monotonically with the probe ratio, the buildup rate increases and the

buildup time becomes shorter. The decay time, however, is fairly constant. In this

example, the cavity was slightly above threshold. As the input is cut off, the cavity

field evolves toward a final self-oscillating steady state intensity in a time which does

not depend much on the initial input intensity. This behavior could be found useful

in an optical processor, as it is seen that seeding the PCR with inputs of various

intensities changes the buildup time but does not affect the threshold condition.

Figure 3.4 shows the response for different mirror reflectivies and for %d = 2,

Rp = 0.5, R_ = 0.1. In this case, lowering the input mirror reflectivity increases the

steady-state PCM reflectivity product 1 1 21. Consequently, the increased PCM gain

overcomes the additional losses of the input mirror and leads to a larger steady state

cavity field. The buildup and decay times slowly increase with smaller input mirror
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Figure 3.2: Normalized cavity field intensity I31/(I1 + I2) showing the response of

the PCR to a square pulse input for various values of the pump ratio and %d = 2.0,

Rs = 0.02, Rm = 0.95, ad = 0.15.
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Figure 3.3: Normalized cavity field intensity I31/(I1 + h) showing the response of

the PCR to a square pulse input for various values of the probe ratio and 7od = 2.5,

Rp = 0.5, Rm = 0.95, ad = 0.15.
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Figure 3.4: Normalized cavity field intensity I31/(I1 + 12) showing the response of the

PCR to a square pulse input for various values of the input mirror's reflectivity and

%d = 2.0, Rp = 0.5, Rs = 0.1, ad = 0.15.
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Figure 3.5: Normalized cavity field intensity I31/(11 + I2) showing the response of the

PCR to a square pulse input for various values of the medium's absorption parameter

and %d = 2.0, Rp = 0.5, Rs = 0.02, Rm = 0.95.
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reflectivity, since this brings the cavity closer to threshold.

Figure 3.5 shows the response for different values of the absorption parameter.

Increasing the absorption losses reduces the cavity field amplitude, everything else

being equal. Here, %d = 2, Rp = 0.5, Rs = 0.02, and Rm = 0.95. The buildup and

decay rates also drop with increasing absorption.

Most of the response curves shown in figures (3.1-3.5) exhibit smooth and mono-

tonic growth to steady state and monotonic decays. With large coupling constant and

especially if the resonator is far above threshold, overshooting and damped oscillations

can also be seen.

3.2.2 Cavity response time

The cavity buildup and decay times were measured from a large number of plots

similar to those shown in figures (3.1-3.5). These times were then plotted as functions

of the pump ratio and the probe ratio, which ratios appear to be the two most

important parameters in determing the system's behavior.

Since some of the buildup curves exhibit overshooting for large "/od, the buildup

time was defined as the time it takes for the cavity intensity to grow from 10% to 90%

of its maximum (which is not necessarily the steady state in case of overshooting).

The decay time was defined as the time it takes for the cavity intensity to drop from

90% to 10% of its steady state value.

Figures 3.6 and 3.7 show the buildup and the decay times, respectively, as functions

of the pump ratio for (a) Rm = 0.8, (b) Rm = 0.95 and Rs = 0.1. For weak

coupling, the buildup time increases with increasing pump ratios for small Rp, reaches

a maximum and drops for larger Rp. This can be correlated with the behavior of the

PCM reflectivity and the cavity field intensity which follow similar trends with varying

Rp, as seen in figures 2.4 and 3.2. For stronger coupling, there is a range of values of

Rp within which the cavity is above threshold. In this region, the initial gain of the

cavity is large (larger than the losses) and the transient buildup is fast, sometimes
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Figure 3.6: a Buildup time versus pump ratio for various values of the coupling

parameter and Rm = 0.8, Rs = 0.1, ad = 0.15. For %d >_ 2.5, the cavity is above

threshold for a range of values of the pump ratio around 10 -1. b Same as figure 3.6a
except that Rm = 0.95.
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exhibiting overshooting. This explains the central dip in the curves (figure 3.6) for

7od > 2.

In figure 3.7, the decay time is plotted as a function of the pump ratio. The

divergence of the decay time as threshold is approached is clearly shown. The pump

ratios at which divergence occurs correspond to the ratios at which the feedback

parameter/3 reaches unity in figure 2.5.

Figures 3.8 and 3.9 show respectively the buildup time and the decay time as

functions of the probe ratio for various values of the pump ratio and for %d = 2.5,

Rm = 0.95, (_d = 0.15. For these values of parameters, the resonator is above thresh-

old for pump ratios ranging from about 0.02 to 0.5. Far below threshold (Rp _ 1),

figure 3.8 shows that the buildup time does not change much for a wide range of probe

ratios. As one approaches threshold (R v _ 0.01 and 0.55), the buildup time varies

significantly with the probe ratio especially for small probe beam intensity. Figure 3.9

shows a similar behavior for the decay time. Below threshold, the decay time does

not change with the probe ratio while close to threshold, it varies significantly with

that parameter. This may bear some important consequences in applications making

use of the cavity for image storage or processing. If a large dynamic range input is

imaged in the PCM, the weaker parts of the input will take considerably more time

to buildup and to decay than the more intense parts, giving rise to contrast enhance-

ment during buildup and contrast reduction during decay. The phenomenon could

also be used to produce momentary time varying spatial filtering if the input spatial

spectrum rather than the input itself is projected in the PCM.

To simulate the buildup of self-oscillation in a cavity above threshold, we calcu-

lated the cavity response to a very weak input pulse of short duration. In the physical

system, this type of seed is provided by scattered noise. The result is shown in fig-

ure 3.10. In figure 3.10a, the cavity is below threshold. A very weak phase conjugate

beam appears and remains in the cavity as long as the seed is present. It then rapidly

decays when the seed is removed. In figure 3.10b, the cavity is above threshold. The

cavity field remains in the cavity even after the seed is removed and it grows very

slowly (note the different intensity and time scales of figure 3.10a and b). After a
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threshold. The parameter values are the same as for figure 3.6a (Rm = 0.8). b Same
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relatively long time, the cavity field builds up more rapidly to a final steady state

value.

3.2.3 Specular and conjugate reflections

We now use the numerical method described in the preceding sections to investi-

gate the temporal response of the two reflected outputs, In = IARI2 and Ic = IAc] 2.

Figures 3.11 and 3.12 show the two outputs normalized to the total pump intensity

I1 + I2, as functions of time for a normalized input Rs = 5 x 10 -3. The results of fig-

ure 3.11 correspond to a pump ratio of 0.5 and a modest coupling parameter %d = 2.5.

Three different values of the input mirror reflectance Rm were used (figures 3.11a-c).

It is seen that with a smaller input mirror reflectance, the total PCM steady state re-

flectivity product I/_1#21 increases, approaching unity. Consequently, the steady state

specular reflection almost drops to zero, leaving only the phase conjugate reflected

wave counter propagating to the input beam.

With a higher coupling parameter (figure 3.12), the PCM steady state reflectivity

exceeds unity. In this case (figure 3.12a) the specular reflection is seen to drop to

zero and then to settle at a finite steady state value which is small compared to

the conjugate reflection. The situation is that of a cavity which is not too far from

threshold. Similar temporal conjugate reflection was reported in [49] for a PCM

having an instantaneous response and a fixed reflectivity. Decreasing the input mirror

reflectance again increases the PCM reflectivity, bringing the cavity above threshold

(figure 3.12b). In this case, the specular reflection drops to zero and then grows to a

large steady state value.

3.3 Experimental results

An experimental setup was built to study the temporal response of the PCR as a

function of the pump ratio, the probe ratio and other parameters. Measurements of
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the cavity's response times are described and compared, qualitatively, with theoretical

predictions in this section.

3.3.1 Experimental setup

A diagram of the experimental setup is shown in figure 3.13. The PCM is an

externally pumped single crystal of BaTiOa. The laser is a single mode Ar +, operating

at )_ = 514nm. The two pump beams and the input beam are each equipped with

a halfwave plate/polarizer assembly used as a variable attenuator. All polarizations

are extraordinary (in the plane of the figure). The pump and the probe beams made

angles of about 49 ° and 15 ° , respectively, with the normal to the crystal surface. The

input mirror (dielectric) had a reflectivity of 95%. It made a small angle with the

input beam in order to produce two distinct interaction regions in the crystal.

The phase conjugate cavity beam was extracted from the cavity by a pellicle beam

splitter PBS having about 5% reflectance. The lens Le reimaged the interaction

regions in the plane of a slit which was positioned to select the cavity beam I31

and isolate it from the other beam I32. The beam intensity I31 was measured by a

photodetector, recorded and stored in a PC. A shutter was used to turn the input on

and off and produce a square pulse, as in the simulation.

3.3.2 Measurement of the cavity response time

Two sets of data were collected - the first for as high a coupling constant as we

could achieve with this particular geometry and the other for a lower coupling con-

stant, spoiled by rotating the crystal by a few degrees. In both cases, the response to

the input pulse was recorded and the buildup time and the decay time were estimated
L

from the curve. A typical experimental record of the cavity field intensity I31 is shown

in figure 3.14.

The results are shown in figures (3.15-3.18). The error bars in these figures

are qualitative and are intended only to give an indication of the level of confidence
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Figure 3.13: Diagram of the experimental setup. L: Ar + laser (514nm), ._/2-P:

halfwave plate/polarizer assembly, Sh: shutter, M: 95% dielectric mirror, PBS: pellicle

beam splitter, Le: imaging lens, S: slit, D: photodetector.
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that was attributed to the eyeball estimation of the characteristic times from the

response curves. Some data were noiser than others and thus were assigned larger

error bars. The lines are visual aids. Above threshold, the PCR response often

exhibits overshooting and sometimes damped oscillations. This made it more difficult

to measure the characteristic times, and larger errors are expected as threshold is

approached.

There were many other possible sources of errors more difficult to quantify. For

example, close to threshold the system is extremely sensitive to any external pertur-

bation. In this region, small mechanical or acoustical perturbations can give rise to

large differences in the PCR transient response.

Figure 3.15 shows the buildup time as a function of the pump ratio. Pump I1 was

maintained constant at 0.5mW with a beam diameter of about lmm inside the crystal,

and pump I_ was varied. The probe ratio was Rs = 0.02. The general behavior is

qualitatively similar to that of figure 3.6 obtained from the simulation. At low pump

ratios, the buildup time increases with Rp and with the coupling parameter. It reaches

a maximum for 0.1 < Rp < 0.2 and then drops. At high pump ratios, the buildup

time is nearly independent of the coupling parameter. The two lower data points near

the center of the high coupling curve are dubious. They could represent the drop of

the buildup time predicted in figure 3.6 above threshold or their lower value could be

due to some external perturbations giving rise to large errors near threshold.

Figure 3.16 shows the decay time as a function of the pump ratio. This also is

qualitatively similar to the result of the simulation shown in figure 3.7. By comparing

the range of pump ratios within which the experimental PCR is above threshold with

the curves of figure 3.7b, which corresponds to the same values of parameters, one

can estimate that the coupling parameter achieved in the experiment was of the order

of %d ,--, 2.

Figures 3.17 and 3.18 show the buildup and decay times, respectively, as functions

of the probe ratio for 7od "_ 2, Rp ,,_ 1. The buildup time decreases monotonically

with Rs in a manner quite similiar to that shown in figure 3.8. The decay time
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behavior is also qualitatively similar to that shown in figure 3.9.

3.4 Conclusion

In this chapter we have presented a numerical scheme for integrating the pho-

torefractive equations separately in the space and time domains using the adiabatic

elimination process. With this numerical scheme, the transient dynamics of a PCR

was described in the limit of a plane wave model and a sluggish photorefractive

medium, but taking into account both the pump depletion and medium's absorption.

The dependence of the cavity buildup and decay times on parameters such as the

pump ratio, the probe ratio, the coupling parameter, the input mirror's reflectivity

and the medium absorption constant were discussed. The numerical results show that

the parameters affecting the threshold most directly are the coupling parameter and

the pump ratio. We find that the higher the coupling parameter, the wider the range

of pump ratio values for which the PCR is above threshold. Results also indicate

that the cavity buildup and decay times can be tailored by varying several of the

system parameters. This may be of importance to image processing applications. For

example, the PCR would, in principle, perform contrast enhancement during buildup

and contrast reduction during decay. This same feature could be used to implement

a time varying spatial filter if the projected field in the PCM is the spatial spectrum

of an image rather than the input image itself.

The numerical simulations also reveal the unusual reflection property of a phase

conjugate Fabry-Perot. For example, we find that when the steady state value of the

phase conjugate reflectivity approaches unity, the specular reflection is completely

extinguished, leaving only the phase conjugate reflection output.

An experimental setup was built to study the transients in a PCR and the exper-

imental results are in general qualitative agreement with the results of the numerical

simulations. In real situations, the material's parameter values may vary considerably

between crystals. In our case, the parameter values for the BaTiOa crystal are cho-

sen from the literature [53]. Futhermore, it seems likely that quantitative agreement
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would require some refinement of the simplified Kukhtarev model by including, at

least, multiple species of traps taking part in the photorefractive process.
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Chapter 4

Temporal and spatial instabilities

So far we have demonstrated how the PCR below threshold responds to the tem-

poral change of an input. In the remaining part of this thesis we will study another

mode of operation of the PCR: emphasis will be given to the characterization of the

spatial structure of the cavity beams above threshold. In this chapter, we first give

a brief introduction to some of the terminology and methods of chaotic dynamics,

which will be applied to the study of the spatiotemporal dynamics of the PCR above

threshold in the following two chapters. The first part of this introduction will be

devoted to chaos in nonlinear dynamics. This includes the discussion of qualita-

tive methods in nonlinear dynamics such as the uses of power spectra, phase space

portraits and the notion of attractors. Regarding the quantitative methods for the

characterization of chaotic dynamics, we give a brief introduction to the notion of

dimensions and to the calculation of the correlation integral function as well as the

Kolmogorov entropy. We also describe a method used for the reconstruction of a

pseudo phase space portrait from an experimental time series. In the second part, we

will briefly mention some recent studies of spatial pattern evolutions and instabilities,

which is currently an active area of investigation [56]. The discussion will focus on

wavefront dislocations and optical vortices because they are found to appear in the

PCR's beams and probably mediate the observed dynamics.
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4.0.1 Nonlinear systems

In general, the dynamics of physical systems can be described by means of dif-

ferential equations. In cases of nonlinear systems, the equations which govern their

behaviors will contain nonlinear terms. Linearization of the nonlinear terms in some

regions of parameter space where their effects are small often provides simple solutions

and a sufficiently clear picture of the system's dynamics. A classic example of this

is the simple pendulum in the small angle approximation. There are some nonlinear

systems, however, where the nonlinear terms dominate in the physically interesting

region of parameter space. In those cases, the linearization of the system's equations

results in the loss of significant knowledge about the system's behavior. The variety

of responses of nonlinear systems is often found to be much richer than that of linear

systems, as illustrated in figure 4.1 for two systems driven by a sinusoidally vary-

ing input. The output of the linear system must also be sinusoidal, with the same

frequency as the input. The output in the nonlinear system can be periodic (not

necessary sinusoidal); or periodic with subharmonics with frequencies 02/n, where n

is an integer. Another possibility is the occurrence of quasi-periodic motion with an

output of the form cl cos(w,t) + c2 cos(022/), where the ratio 021/022 is an irrational

number if wl and 022 are incommensurate; or the output can be chaotic, fluctuating

erratically in time.

Now, let us look at one example of nonlinear system which is at the origin of

the science of chaos. Chaos was first discovered by E. N. Lorenz [58] in the early

1960s. Lorenz considered a rather typical problem of fluid dynamics which is called

the convection instability or Rayleigh-Benard instability (his purpose was to analyze

the motion of the atmosphere). The motion of the fluid is described by the Navier-

Stokes equations which are nonlinear, partial differential equations. In order to cut

down the complexity of the problem of solving these equations, Lorenz introduced

a Fourier decomposition. He expanded the velocity and temperature fields of the

fluid into spatial Fourier series. The Fourier coefficients were still time dependent

variables. Lorenz truncated the infinite series to only three terms representing three
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Figure 4.1: Schematic diagram showing the possible outputs of a linear and a non-

linear system for a sinusoidal input. In a linear system, the output must be also

sinusoidal. In a nonlinear system, the output can be either periodic, periodic with

subharmonics, quasiperiodic or chaotic. (After [57])
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individual modes to save computing effort while still keeping the important physics

of the problem. In this way he derived three coupled differential equations for three

variables. The equations of the Lorenz model are usually written in the following

form:

dX

d--t- = _(Y - X), (4.1)

dY
- XZ+rX-Y, (4.2)

dt

dZ

d--t = XY - bZ. (4.3)

X represents the amplitude of the fundamental velocity mode; Y represents the fun-

damental temperature mode and Z represents the temperature second harmonic, a is

the Prandtl number, r = R/Rc is the normalized Rayleigh number relative to the criti-

cal Rayleigh number Rc at which the onset of convection occurs, and b = 4rr2/(_r2+k_),

where kl is a dimensionless wave number. The equations 4.1-4.3 are of quite simple

structure. They are ordinary differential equations and contain only two nonlinear

terms in XZ and XY. To the great surprise of many physicists and mathematicians,

Lorenz found that the numerical solutions for some parameter values (e.g. o" = 10,

b = 8/3, r = 28) can exhibit, in addition to stationary and periodic states, irregular

behaviors. Figure 4.2 illustrates the rapid divergence, characteristic of chaotic behav-

ior, of two solutions which start from initial conditions differing only by about 1 part

in a thousand. Figure 4.3 shows the plots of X versus Y and X versus Z where the

trajectories stay most of the time around certain zones although the trajectories are

never closed.

4.1 Characterization of chaotic dynamics

4.1.1 Fourier spectra

One method of examining the dynamics of a nonlinear system is by Fourier spectral

analysis. Consider the temporal behavior of a function y(t). It is quasiperiodic if its
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Fourier transform consists of sharp spikes, i.e. if

y(t) = fi cjF "_'t. (4.4)

j----1

The characteristic recurrence feature of quasiperiodicity may be stated formally as

follows: for any _ > 0 there exists a T(_) such that any interval of length T(() of the

real line contains at least one point t' such that ty(t) - y(t')l < _ for any t [59]. Given

y(t), we can always find a t' such that y(t') is as close to y(t) as we wish, and there

are an infinite number of such times t'. Periodic functions are quasiperiodic, but of

course quasiperiodicity does not imply periodicity. Thus the function

y(t) = c, cosset + c2cos 2t (4.5)

is quasiperiodic, but it is not periodic unless wl and w2 are commensurate frequencies,

i.e. unless Wl/_2 is a rational number.

Quasiperiodic motion can certainly look very complicated and irregular, but it

cannot be truly chaotic in the sense of exponential sensitivity to initial conditions. In

particular, the difference between two quasiperiodic trajectories is itself quasiperiodic,

and so we cannot have the exponential separation of initially close trajectories that

is the hallmark of chaos.

Since quasiperiodicity implies order, it follows that chaos implies non-quasiperiodic

motions. Thus chaotic motion does not have a purely discrete Fourier spectrum as

in 4.4, but must have a broadband, continuous component in its spectrum. Fourier

analysis is therefore a very useful tool in distinguishing regular from chaotic motion.

Caution has to be taken here because a broadband spectrum can arise from

stochastic behavior as well as from deterministic chaos. Additional analyses are

therefore needed. For example, for a process governed by stochastic mechanisms,

the spectral power at high frequencies follows a power law. In contrast, for a process

governed by deterministic mechanisms, the power spectrum falls off exponentially [60].

Therefore, a linear behavior on the semilogarithmic plot of a power spectrum indi-

cates that the broadband noise arises from a deterministic rather than a stochastic

process.
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4.1.2 Phase space portraits and attractors

A dynamical system consists of two parts: the state which describes the essential

information about the system, and the dynamics which is a rule that describes how the

state evolves with time. The evolution can be visualized in phase space, an abstract

space whose coordinates are the components of the state. Therefore, the phase space

provides a powerful tool for inspecting the behavior of chaotic systems. The phase

space represents the behavior in a geometric form. For example, a pendulum that

moves with friction eventually comes to a rest, which in phase space means that the

orbit approaches a stationary point called a fixed point. Since it attracts nearby

orbits, it is known as an attractor.

Some systems do not come to rest in the long term but cycle periodically through

a sequence of states. An example is the pendulum clock (driven pendulum), in which

energy lost to friction is supplied by an external force. The pendulum clock repeats

the same motion over and over again. In phase space such a motion corresponds to

a cycle, or periodic orbit. Such attractors are called limit cycles.

A system may have several attractors. If that is the case, different initial conditions

may evolve to different attractors. The set of points that evolve to an attractor is

called its basin of attraction. The pendulum clock has two such basins. A very small

displacement of the pendulum from its rest position results in a return to rest. With

a larger displacement, however, the clock begins to tick as the pendulum executes a

stable oscillation.

Another type of attractor in phase space is a torus or quasiperiodic attractor,

which resembles the surface of a doughnut. This shape describes motion made up of

two independent oscillating frequencies such as in driven electrical oscillators. One

frequency determines how fast the orbit circles the doughnut in the short direction

and the other regulates how fast the orbit circles the long way around. If motion is

represented by the combination of more than two oscillating frequencies, the attractor

becomes a higher-dimensional torus.

The important feature of a quasiperiodic attractor is that in spite of its complexity
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it is predictable. Even though the orbit may never exactly repeat itself, i.e if two

frequencies are incommensurate, the motion still remains regular. Orbits that start

on the torus near one another remain near one another, and long term predictability

is guaranteed.

Since the first example of a chaotic or strange attractor discovered by Lorenz, now

known as the Lorenz attractor, interest in looking for this special type of attractor

in phase space has been growing rapidly. A chaotic attractor has a much more

complicated structure than a predictable attractor such as a fixed point, a limit cycle

or a torus. For a chaotic attractor, two orbits with nearby initial conditions diverge

exponentially and then come back close together for only a short time. Stretching and

folding operations which take place in phase space are the key to understanding the

chaotic behavior on these attractors. Exponential divergence is a local feature because

attractors have finite size so that two orbits on a chaotic attractor cannot diverge

exponentially forever. As a result, the attractor must fold over onto itself. Although

orbits diverge and follow increasingly different paths, they eventually must pass close

to one another again. The process of stretching and folding happens repeatedly,

creating folds within folds indefinitely. A chaotic attractor is, therefore, much like

a fractal: an object that reveals more details but self similar as it is increasingly

magnified.

4.2 Dimensions

To distinguish deterministic chaos from stochastic noise, other quantitative means

are needed. A chaotic attractor can be quantitatively characterized by its geometric

properties. A suitable quantity characterizing the attractor as a metric structure is

its dimension.

There are several alternative ways of defining the dimension of a set of points [61].

We shall give what we feel to be the most intuitive one here, called the fractal or

capacity dimension De [62]. Referring to figure 4.4, we consider a set of points
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N,,., 1/e

N,,.. 1/e2

Figure 4.4: Illustration of the method of covering a 1- and 2-dimensional sets of points

using small squares. This can lead to an intuitive definition of the capacity dimension

(see the text). (After [57]).
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uniformly distributed along a line as in the above half of the figure. We want to

find out how many small squares of side length c are needed to completely cover the

set of points. If the line is of length l, then this number will clearly be N(e) = I/e.

Similarly, we can consider a two-dimensional set of points as shown in the bottom half

of the figure, and find that the number of small squares needed to cover the area A

is N(e) = A/e 2. Extrapolating this procedure to sets of points in higher dimensions,

we find the following scaling rule:

ld
N(e) - -- (4.6)

-- £d'

where d is the dimension of the set of points. From this we can define the capacity

dimension Dc as

log N(¢) (4.7)
De = log l + log(i/e)'

and in the limit of small e, the term containing l becomes negligible, i.e.

De "_ limn log N(e) (4.8)0log(1/ )

If the dimension of a set of points as defined in equation 4.7 is non-integer, then the

set is a fractal set.

The structure of the strange attractor does not tell us anything about the fre-

quency with which different points on the attractor are visited in the course of the

flow. It is therefore useful to modify the definition of eq. 4.8 by covering the attractor

with cells and weighting the jth cell by its visitation probability Pj.

information dimension

where

This gives the

DI = limI(e)/log(1/e), (4.9)
_---*0

N(e)

I(e) =_- __. Pj log Pj. (4.10)
j----1

Note that if each cell has the same visitation probability, SO that Pj = 1/N(c) for all

j, then I(_) = N(e) and DI reduces to De. In general, though, DI <_ De.

To generalize, it is convenient to define an infinite set of dimensions. Let )_(t) =

(xl(t),x2(t),"" ,xd(t)) denote a trajectory in a d-dimensional phase space and con-

struct from the trajectory a sequence of points )_(0), )((T), )_(2r),-..,)_(MT) in
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phase space, where M is large. Partition the phase space into N(e) cells of side e

and let Mi be the number of points appearing in cell i. Define Pi = Mi/M as the

probability of finding a point in cell i. Then the dimensions D,_ are defined by

Dn=li_ma( 1 ) (_))0 _ log P? /loge. (4.11)

Note that

and

Do = -limlogN(e)/loge = De,
¢--*0

(4.12)

D' = li_ma(N_)pil°gPi) /l°ge= Dl'_o \i=1 (4.13)

That is, Do and Da reduce to the fractal and information dimensions defined earlier.

For the total set of generalized dimensions it can be shown that D_ _< Dm for n _> m,

where the equality holds for a completely homogeneous probability distribution, i.e.

P, = 1/N(e). Hence, the difference between dimensions of different order measures the

degree of inhomogeneity of the attractor due to the variation of visitation frequency

of each cell.

The dimension D2 is related to the correlation integral function

C2(e,d) = lim 1 MF_, z,j),
i,j=-I

(i_j)

(4.14)

where zij is the separation of two of the points such that z_j = [_d=l(xk(tj) --

xk(tj))_] a/2 and O(x) is the step function such that

(

O(x) = _ 0 , if x<0 (4.15)

( 1 , otherwise.

To see this, note that _ P_ is the probability that any two points lie in the same cell.

This is approximately the probability that two points on the attractor are within a

distance e of each other, which is given by eq. 4.14. Thus, the correlation dimension

is

D2(d) = lim l°g C2(e'd) (4.16)
_--.0 log
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4.2.1 Kolmogorov entropy

Another useful quantity to characterize a chaotic attractor is the Kolmogorov

entropy, which involves a concept with a strong analogy to the entropy concept in

information theory. In information theory, we know that the maximum information

content for a system with two possible states is 1 binary bit. It is 2 bits for a system

with four possible states and so on. In general, the maximum information content is

log_ N bits for N possible states.

Suppose a system has N states, and the ith state is known to occur with probability

Pi. The entropy of the system is defined as

N

S = - _ Pi log_ P,. (4.17)
i=1

Here, entropy is a measure of the amount of information necessary to determine the

state of the system. Consider now a trajectory x(t,) = (xl(ti),x2(ti),... ,Xn(ti)) and

partition phase space into n hypercubes of side e. Let P(il,i2,... ,in) be the joint

probability that the point x(ir) lies in the iith cell. Then, from the above discussion,

Kn= y]_ P(il,i2,...,in)log2P(il,i2,...,in ) (4.18)
il ,...,in

is a measure of the amount of information necessary to specify the trajectory to within

a precision e. It follows that Kn+l - K,_ is the additional amount of information

required to specify which cell x(nr + T) will fall in. The Kolmogorov entropy may be

defined as [63]

K - limlim a lim ( 1 )

N

,--.o_ og_ -_T y_(li_+l- Iin) (4.19)
n=l

= -limlim lim ( 1 )_--.o_--+oN--,oo --_r . ._ . P(il, z2, . . . , in)
t1112 _...tln

xlog2P(il,i2,...,i,_ ). (4.20)

We see that K is the average rate of the information loss. Hence, K = 0 in an ordered

system; K = oo in a random system; and K is positive constant _ 0 in a chaotic
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system. To generalize, we define the order-q Renyi entropy as

I(q=-limlim lim ( 1 )v---_O_---*ON--*oe Nw(q--1) l°g2 _ Pq(il,i2,...,in), (4.21)
il ,i2,...,in

with Pq = Pexp(q - 1)log 2 P. Of all the order-q quantities Kq, I(2 is the easiest

quantity to calculate. It can be shown to be a lower bound to the Kolmogorov

entropy [63].

4.2.2 Dimensions and phase space portraits from an experimental time

series

In the discussion of the preceding section, we made no mention of how one can

construct a phase space portrait of a dynamic system with only time series data for one

variable. For example, in our experiments with the PCR, the data is the temporal

fluctuation of an intensity. According to the Takens embedding theorem [64J, the

topology of an attractor can be reconstructed in an artificial phase space derived

from a single experimental time series. The procedure in such cases is to construct

a pseudo phase space, for example by plotting the value of the measured variable at

time t on one axis and successively time-delayed values on other axes. For example,

we denote the measured quantity at time t by x(t). Then, for a two-dimensional

phase space, we plot x(t + r) on the second axis, where r is a small interval of

time. Construction of a d embedding dimensional phase space follows in the same

manner by using )( = (x(t),x(t + r),..-,x(t + dr)). The choice of r is a debated

subject [56]. There is a certain amount of trial-and-error involved in finding the best

r for a particular problem. If _- is made too large, one loses the correlation between

the data points, with the result that the plot is just a randomly moving wiggly line.

One the other hand, if too small a value is chosen, the plot shows strong dependence

among points and no structure can be resolved.

To calculate the correlation dimension and the Kolmogrov entropy from an exper-

imental time series data, we simply apply the calculation methods discussed in the

preceding sections to the embedding phase spaces made up of those vector points 3_.
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The second order Renyi entropy is given by

I'(_ = r-'[logC2(e,d)- log C_(e, d + 1)1. (4.22)

For small e and large embedding dimension d it is found that

C2(e,d) " £D2(d) exp(-drK2), (4.23)

so that in practice K2 can be obtained by calculating C2(c, d) for different values of d.

As K2 is a lower bound to the Kolmogorov entropy, the condition Ks > 0 is sufficient

for the existence of chaos.

4.3 Background on spatiotemporal chaos

4.3.1 Extended systems. Weak turbulence

Chaos, as discussed in the preceding sections, is a temporal phenomenon as long

as there are no spatial counterpart involved. This limitation has to be reconsidered

if the degrees of freedom in a dynamical system have a spatial significance. Indeed,

in nonlinear nonequilibrium states, as in fluid convection, there appear structures,

which have been called dissipative structures by I. Prigogine [65]. Examples of these

states having structures include:

(1) patterns with steady structures which vary purely in space (e.g. convection of

fluids, chemical reactions, etc.);

(2) states with homogeneous structures which vary periodically purely in time (e.g.

chemical oscillations, heartbeat etc.);

(3) quasiperiodic states (similar to (2)), which vary quasiperiodically in time;

(4) chaotic states which vary chaotically in time;

(5) turbulent states which vary chaotically both in time and in space.

Some physical systems may only exhibit one of these examples while others can

have all these, such as Rayleigh-Benard convections and Taylor-Couette flows [66].

Regarding the nonequilibrium states involving spatial structures, one of the tasks of
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spatiotemporal chaos is to find out how the local/global instability mechanisms are

manifested in the physical space rather than in the phase space portraits.

The notion of temporal chaos discussed in this thesis applies to a situation where

the confinement effects are so strong that the degrees of freedom in a dynamical

system one studies do not have any spatial significance. In that case, one deals only

with the temporal aspect of the dynamics. When systems are weakly confined, i.e. the

boundary effects are less stringent, the instability mechanisms can be then manifested

in the structural modulations. The word pattern will then be a key to the associated

disorder, which has now a space-time meaning.

A much studied example of a confined system is that of a fluid layer contained

in a small box heated from the bottom [67]. At the beginning of the experiment,

the liquid is static. The heat flows across the layer cell via conduction. As the

temperature gradient reaches a critical value, a convection flow sets in. The hot and

less dense liquid rises in the middle while the cool liquid flows down at the sides. So,

there appear two convective rolls. As the temperature gradient is increased further,

the rolls suddenly become unstable in a specific way. A wave (mode) starts running

along the roll (see figure 4.5) periodically. As the temperature gradient is increased

further, an additional new wave (mode) is observed. The temperature monitored

locally fluctuates periodically and quasiperiodically until it becomes chaotic. This

early work has shown how the confinement effects affect the dynamics. From the

physical dimensions of the container, the aspect ratio F can be defined to be the

ratio of the laterial extension l to the height which is comparable to the radii of the

rolls, )_, i.e. F = l/,_. When F is small, the spatial structure is stablized by the

lateral confinement effects. In constrast, when F >> 1, the system is called weakly

confined or extended, where the size of ordered states is down to a local scale only.

The overall structure is then to better understood in terms of pattern or textures. As

the complexity level increases, structural defects may often appear. The role played

by such defects in the turbulent system is a currently active area of research [68].

If now the layer of fluid considered above is contained in a box of much larger

aspect ratios, i.e. the lateral extension is much larger than that of the radii of the
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T I

Tb

AT:Tb-T t

(To<AT<To,)

(AT>To,)

Figure 4.5: Schematic diagram of the Rayleigh-Benard convection. A thin layer

of fluid in a small box is heated from the bottom. Two convective rolls rotate as

indicated by the arrows when the temperature gradient reaches a critical value. As

the temperature gradient further increases, waves are excited and run along the lateral

direction of the rolls.
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rolls, a continuous spectrum of excited waves (modes) can be present. When many

of them with comparable wavelength can be present independently with nearly equal

amplitude, their mutual interferences can induce large scale modulations. These

kinds of modulation have been associated closely with the so called the Benjamin-

Feir instability [69]. To describe such modulations or instability mechanisms, the

basic idea of spatiotemporal chaos is to extend the notion of an amplitude that is

time-dependent-only, as in temporal chaos, to account also for spatial dependence.

In other words, the amplitude of the wave has to be described by the two variables

of time and space. In fact, such an idea of using envelop functions for the amplitudes

of the excited waves leads to a complex Ginzburg-Landau equation to describe the

dynamics of the dissipative structures in hydrodynamics [68].

4.3.2 Topological turbulence

The last few years have witnessed very extensive explorations of the spatial be-

havior of laser beams which may display spatial structures similar to those seen in

hydrodynamics [70, 71, 72, 73, 74, 75] . A series of investigations of transverse ef-

fects in laser dynamics by Lugiato and co-workers shows that, just as temporal chaos

results from the presence of at least a few competiting frequencies in a nonlinear

system, instability mechanisms of the spatial structures in a laser may be governed

by the interactions and competitions among a few chosen transverse cavity modes.

The solutions of Maxwell-Block equations including diffraction [70] display families

of transverse patterns containing regularly distributed dark spots called phase singu-

larities [76, 77]. Also, recently, in their analysis of laser cavities with large Fresnel

number, P. Coullet et al. reduced the Maxwell-Block equations to a single equation

of the form of the complex Ginzburg-Landau equation [78]. In the two-dimensional

space of the Ginzburg-Landau equation, they found singular solutions in the form of

spirals. As the spiral waves bear some analogy with the vortices in hydrodynamics,

they are now named optical vortices. In the stable case, these solutions persist in-

definitely owing to their character of topological defect. In the unstable case, they
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nucleate spontaneously as temporary singularities of the moving wavefront. The spa-

tiotemporal chaotic regime that sets in has been called defect-mediated turbulence

or topological turbulence [79, 80]. Defect-mediated turbulence is currently an active

area of investigation across many disciplines of nonlinear science. The role of de-

fects in mediating turbulence in nonequilibrium systems with large aspect ratios is

an important matter of interest. Therefore, some knowledge of defects [81] becomes

necessary. Before discussing some of the structures and characteristics of defects, let

us close this brief introduction on spatiotemporal chaos with some mention of the

methodologies commonly used for its analysis.

4.3.3 Methodologies of spatiotemporal complexity

At present, there are still no well-established methods for studying spatiotemporal

chaos, in particular the fully developed turbulence. However, we may see emerging

some important paradigms or methods for the study of the spatiotemporal dynamics•

We now describe briefly some of these methods.

One of the oldest examples of a dynamical system which may evolve both in space

and time are cellular automata. Cellular automata were invented in the late 40s by J.

yon Neumann to mimic the behavior of complex, spatially extended structures. W.

Burke gave a good overview of the work of yon Neumann [82]. In cellular automata,

space is divided into discrete small units called cells or sites. The cells take on

numerical values. Consider a one-dimensional cellular automaton consisting of a row

of cells. Each cell is assigned a set of initial numbers. A set of rules specifies how

these numbers are to be changed at every clock step. Suppose that the automaton

initially is filled with 0's except for a single cell which is occupied by a 1:

•..010000000...

And suppose that the rule states that the number in each cell is to be replaced by

the sum of itself and its left neighbor. Thus, after one clock step, the state of the

automaton will be as follows:

...011000000...
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Another clock step later the state will be

followed by

...012100000...

etc. In fact, this cellular automaton is one of the early yon Neumann machines used

to compute the binominal coefficient of (a + b) '_. Cellular automata can be applied to

one, two and higher dimensional problems. The fixed rules which specify the change

of the cells' values carry out local interactions between neighboring cells, reflecting

the dynamics of the system in question. Cellular automata have been used to model

the complexity in biological systems from the level of cell activity to the levels of

clusters of cells and populations of organisms. In chemistry, cellular automata have

been used to model kinetics of molecular systems and crystal growth. In physics,

they have been used to study dynamical systems such as the clustering of galaxies.

Another model for studying spatiotemporal chaos in spatially extended systems

are the coupled map lattices introduced by K. Kaneko [83]. Coupled map lattices

are dynamical systems discrete in both time and space. Although their modeling

structure looks similar to that of cellular automata, the change of the state of each

site is done by a local mapping function rather than by a set of rules. One example

of coupled map lattices has the form

a:n+,(i) = (1 - D)f(z,_(i)) + D[f(zn(i + 1) + f(x,_(i- 1))], (4.24)

where n represents the time step, i represents a lattice site, and D represents the

diffusive coupling between nearest neighbors. The function f(x) is chosen to be

ax(1-x) (i.e. coupled logistic lattice)or x + A sin(27rx)+c (i.e. coupled circle lattice).

It has been shown that transitions to turbulence via spatiotemporal intermittency

arise in these systems [84]. At the same time, studies of spatiotemporal chaos by
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coupled map lattices have been growing rapidly because calculations are efficient and

they lend themselves to the generalization of some of the quantitative methods used to

characterize temporal chaos (e.g. Lyapunov spectra and Kolmogorov entropy density

). This approach is also one of the very few known approaches providing means for

the diagnosis of experimental data of spatially extended systems [84].

A third possible approach to the study of spatiotemporal dynamics is called the

modal expansion of fields with transverse structures, as used in laser systems by

Lugiato and co-workers. As is well known, spatiotemporal problems of continuous

variables are mostly described by partial differential equations (PDEs). The solutions

often rely on numerical methods. Sometimes, PDEs can be formidably demanding in

computing power. Lugiato and co-workers demonstrated an alternative way of solving

the PDEs of lasers by expanding the dynamical quantities in a series of normal modes.

The PDEs are then reduced to a set of coupled ordinary differential equations (ODEs)

in the limit of the mean-field approximation. The basic idea of this approach is to

represent the envelop functions of the fields' amplitudes by the space-dependent-only

normal modes and the corresponding time-dependent-only coefficient if it is validly

allowed. This method is highly efficient and yet the essential dynamics of the spatial

structures can still be captured.

A last approach to a description of the turbulent state in a nonequilibrium system

is to characterize it by the presence of topological defects. As mentioned before, this

approach of topological turbulence was first introduced by P. Coullet et al. for laser

systems [80]. They used numerical solutions of the Ginzburg-Landau equation to

illustrate a mechanism of defect formation, annihilation and dynamics in dissipative

structures. Another possible theoretical approach to describe defect formation and

turbulence in large aspect ratio systems has recently been proposed by I. Procac-

cia [85]. In the study of nematic electroconvection, the ordered state of the convec-

tive rolls before the appearance of defects is well described by the envelope equations.

However, how the modulations are affected by the defects is not clear. Procaccia

concluded in his study of nematics that a field theory might be necessary to describe

the dynamics and the interaction forces between defects. On the experimental side,
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several examples have already demonstrated defect formation in nonequilibrium sys-

tems of large aspect ratios, as in surface waves, in thermal convection, and in the

transverse patterns of lasers and nonlinear optical systems [56, 86]. In fact, the dy-

namics that we observe in the PCR above threshold also provide evidence for such

defect-mediated transitions [87, 88]. This will be demonstrated in the following chap-

ters. But we first introduce in the next section some of the concepts related to the

definitions of defects and in particular the phase defects or wavefront dislocations

observed in electromagnetic waves.

4.4 Wavefront dislocations/phase defects

In this concluding section, we will define the singularities found in electromagnetic

waves and the corresponding terminology used later on in our discussions of the PCR's

dynamics. The discussion given here follows closely that of a paper by M. Berry [89].

Wavefront dislocations or phase defects were first discovered by Nye and Berry

in their study of ultrasound reflected from a rough surface [90]. Wave dislocations

appear ubiquitously in optical fields, acoustics, and quantum mechanics as well as

water waves [81, 91]. Wavefront dislocations are just one kind of singulary that can

appear in scalar waves (for vector or tensor waves, see [92]). Ray caustics are another

kind of wave singularity with a different length scale. On a caustic, rays of light (in a

geometrical optics sense) are all focused to a point and thus the intensity is infinite.

On a phase defect, the intensity is zero. To be observable, the phase defects of a

wavefront must be explored on the wavelength's scale, for example by interferometry.

Caustic singularities, in constrast, are visible to the naked eye (e.g. the reflection of

sunlight from a wavy water surface).

As is well known, singularities are present in many complicated systems, such as

solids, liquid crystals, and hydrodynamics as well as in nonlinear optics. When con-

sidered as geometric structures, singularities are forms rather than materials. Waves

are also forms. Therefore, dislocations in wavefronts are forms of forms. Despite their

"double" abstract nature, they are directly observable phenomena.
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Another important nature of wavefront dislocations is their singular character.

Consider a travelling wave ¢(r,t) with complex amplitude p(r,t) and phase x(r,t)

defined by

_b = pexp(ix). (4.25)

For the waves in which we are interested, _ is a smooth single-valued function of

position and time. When traversing a loop in the wavefront, X may change by 2mTr,

where m is an integer. Let us shrink the path to a very small loop while the amount

of variation in X does not change. Thus, a singularity is enclosed because X is varying

infinitely fast. And yet the smoothness of _ has to be preserved. It implies that this

can happen only where _ = 0, i.e. X is indeterminate. As _b is null, both Re_b and

Im_b vanish (i.e. Re¢ = Im_b = 0). Thus, phase singularities are points in planes and

lines in space, analogous to crystal dislocations in solids.

Before we illustrate the possible structural forms of the wavefront dislocations by

examples, we would like to ask how they happen. Since the singularities happen only

where _b = 0, i.e. the intensity p2 vanishes, they might be confused with the dark

fringes often discussed in elementary treatments of interference. The dark fringes

are, however, conceived as surfaces rather than lines. Wavefront singularities result

from the destructive interferences of the different rays contributing to _b at a crossing

region of waves scattered from different objects. The crossing can be a point in a

plane or a line in space.

Now we will illustrate some of the possible structural forms of the dislocations of

a wave _ satisfying the wave equation in a uniform static isotropic medium:

1 02_b (4.26)= ;z-by.

Suppose that _ travels only in the z-direction, i.e. _b = p exp(i_), _ = z- ct. The first

case considered is a dislocation moving rigidly with the host wavefront. The wave for

such a case must satisfy

02---_¢+ 02_b - 0. (4.27)
= 0u

Consider as an example, _b = A(kx + i/3k_)e ik¢, where A and /3 are real constants.
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Figure 4.6: Phase contours of a travelling wave containing a pure edge dislocation.

The wave moves upwards. Notice the wavecrest ending at the origin E. This singu-

larity is an edge dislocation bearing some analogy with an edge dislocation in solids.
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Figure 4.6 shows the contours of 4, i.e. wavefronts of ¢ moving upwards. The

dislocation is located at E. In crystallographic terms, this is a pure edge dislocation.

The next example of dislocation is the pure screw dislocation, which for strength s

has a wave function

¢ = A(kx + iky)Se ik¢. (4.28)

Figure 4.7 shows the typical plot of pure screw dislocation with strength s = 2.

The sign :k determines the helicity of the screw and the charge s its pitch. Negative

charge of a screw dislocation means that the phase increases counterclockwise around

the dislocation. There is also a mixed type of dislocation, i.e. edge-screw dislocation

with waves of the form

_, = A(kx + ifl(k_ cos_ - kysin _))e _k¢, (4.29)

for example, _ = 0 and _ = 7r/2 correspond to pure edge and pure screw respectively.

Now consider the modulation of the wave in equation 4.25 with quadratic terms in

x, y and which also satisfy equation 4.27. In this way, it would have curved dislocation

lines that move rigidly with the host wave. An example is _ = [(z - iy) 2 + iflk_]e _k_

whose dislocation lines have the form of two parabolas orthogonal to each other, as

shown in figure 4.8a.

We now consider examples showing dislocations moving relative to the wavefront

as the host wave propagates. A simple example of these is

¢ = A[akx + k2x 2 + i(t3k_ + kz)le ik_, (4.30)

where a is real constant. This has two edge dislocations at x = 0 and x = -a/k,

moving parallel to the propagating axis (see figure 4.8b). In a crystallographic term,

such motion is glide. Another kind of movement is made possible if the term in _ is

made quadratic, i.e. if

¢ = A[akx + k2x 2 + i(flk2( 2 + kz)]e 'k_, (4.31)

Now two pairs of edge dislocations are located at x = 0, and x = -a/k. If fl > 0,

members of each pair approach, collide and annihilate while if fl _< 0 they appear and

92



CHAPTER 4. TEMPORAL AND SPATIAL INSTABILITIES

X

1
Figure 4.7: Wavefronts of a travelling wave containing a pure screw dislocation. This

helical wavefront with the dislocation along the axis of propagation rotates in clock-

wise. The direction of rotation determines the sign or charge of the screw dislocation.

Clockwise rotation means a positive charge and vice versa.
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Figure 4.8: Examples of dislocations' motion in a travelling wave. The wave travels

upwards (see text for details).
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Figure 4.9: More examples of dislocations' movements in a travelling wave. The wave

travels upwards (see text for details).
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then glide apart (see figure 4.9a). If a slight change of form is made in equation 4.31,

for example, if it becomes

_l, = A[k_x 2 + i(t3- i,,/)k2_ 2 + ikz]e ik_, (4.32)

where 7 is a real constant, two pairs of edge dislocations ap_koach each other along

parabolic trajectories and annihilate when they meet (see figure 4.9b). Such motion,

called climb, corresponds to the spontaneous recovery of a tear in a wavefront. Above

are a few of many possible structural forms and movements that the wavefront dis-

location or phase defects can have. Many other interesting examples can be found in

references [90, 93, 89].

In conclusion, we have presented a brief introduction of nonlinear dynamics and

spatiotemporal as well as temporal chaos. Of particular interest are the definitions

of topological turbulence and the role played by the wavefront dislocations or phase

defects in mediating the dynamics. Some aspects of these phenomena will be illus-

trated in the study of the PCR's dynamics above threshold, described in the following

chapters.
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Chapter 5

Experiments: spatiotemporal

dynamics in PCRs

In this and the following chapter we present the results of an experimental study

of spatiotemporal structures in the PCR's beams above threshold. In this chapter,

the emergence of spatiotemporal structures as the degree of transverse confinement is

varied by changing the Fresnel number will be described in detail. A theoretical model

of the spatiotemporal dynamics of the PCR will be presented in the next chapter.

This chapter is organized as follows: In section 5.1, the experimental arrangement

for the study of the spatiotemporal dynamics of the PCR will be described. The

experimental results and their analyses are presented in the following five sections.

The dynamics of the local intensity measured at one point in the beam will be analysed

in section 5.2 with the aid of experimental time series, power spectra and phase

space portraits. An attempt at quantifying the chaotic dynamics by calculating the

correlation dimension and the Kolmogorov entropy will be presented in section 5.3.

The spatial instabilities of structures across the PCR's beams will be discussed in

sections 5.4 and 5.5, where it is indicated that the spatiotemporal dynamics observed

has some the characteristics of a topological or defect-mediated turbulence. Finally,

in section 5.6, it is shown that the superposition of a few simple empty cavity TEM
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modes with different frequencies have a dynamical behavior compatible with the

observed phenomena. Additional discussion and conclusions are presented in the

concluding section 5.7.

5.1 Experimental setup

The linear phase-conjugate resonator under study is sketched schematically in

figure 5.1. The resonator consists of a flat dielectric mirror M (95 % reflectance) and

a phase-conjugate mirror. The phase-conjugate mirror is a single crystal of BaTiOa

5mmx5mmx7mm in size. It is pumped externally by two counterpropagating beams

from a single-mode Argon ion laser tuned to 514nm. The beam diameter is about

1.5mm. The intensity and polarization direction of each pump beam are controlled

independently by assemblies consisting of a half-wave plate and a crystal polarizer.

In all experiments reported in this chapter, both beams' polarization directions were

extraordinary, i.e. in the same plane as the _-axis of the crystal, which lies in the

plane of the figure.

The resonator contains two apertures, H1 and H2. The aperture H2 is located as

close as possible to the mirror M and in the front focal plane of a 16 cm focal length

lens. The aperture H1 is in the back focal plane of that lens, about 3 cm away from

the phase-conjugate mirror. The degree of transverse confinement of the system can

be varied by changing the apertures sizes. A quantitaive measure of this confinement

is given by the resonator Fresnel number defined as

F- DID2 (5.1)

where D1 and D2 are the diameters of the apertures H1 and H2 respectively, A is the

wavelength and f is the focal length of the lens. D1 is small enough to ensure that

the interaction region in the crystal is smaller than the area of pump overlap. The

Fresnel number has a concrete physical meaning [94]. A simple argument based on

scalar diffraction theory shows that the transverse dimension of a speckle near the

aperture H1 is given by Af/D_. F is, therefore, a measure of the number of speckles
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(514nm)
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(BaTiOs)_

I

Z

BS3

J [J
D2 D1

Pump
/

BS2

CCD

Figure 5.1: Schematic diagram of the phase-conjugate resonator setup: )_/2-P are

half-wave plate - polarizer assemblies used to vary the intensity of the beams indi-

vidually. All beams' polarizations are extraordinary. The two apertures H1, H2 are

one focal length away from the lens (f=16cm). The Ar + laser operates in a single

mode at 514nm. The phase-conjugate mirror is a single crystal of BaTiO3. D1, D2

are photomultiplier tubes measuring the local intensity at two different locations; D3

monitors the laser output and the CCD camera is used to capture the dynamics of
the intensity distribution.
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along any transverse diameter in the resonator field. In all the experiments reported

here, except for the measurements made with F < 3 , the aperture H1 was fixed with

D1 = 0.69ram.

The Fresnel number is the control parameter used in the experiments. The Bragg

detuning achieved by misaligning one of the two pumps is another significant param-

eter, which will be considered in the next chapter. Both appear to be the parameters

that most directly affect the spatiotemporal dynamics of the system. Two other pa-

rameters have been observed to affect the dynamics as well, but to a much lesser

degree. The first is the total intensity Io incident on the crystal. The response time

associated with the photorefractive effect is roughly inversely proportional to the in-

tensity in the range used ( 10mW/mm 2 "_ 100 mW/mm _ ). For our crystal, the

response time was of the order of ls mm2/mW. The second factor influencing the

dynamics is the pump ratio, defined as Rp = I2/I1, where/2 and I1 are pump 2 and

pump 1 intensities, respectively (see figure 5.1). The pump ratio can be used to vary

the departure of the cavity from threshold, which affects the buildup and decay rates

of the cavity [34]. It has been seen in chapter 2 that the decay time diverges for

the values of the pump ratio at which the cavity reaches threshold for self-oscillation.

From chapter 3 (fig. 3.10), it is seen that the cavity is above threshold for 0.1< Rp <

1. The departure from threshold can then be varied by choosing a pump ratio within

that range. With a better alignment of the crystal, and thus a higher gain coefficient,

that range could be extended to Rp < 2 for the experiments described in this chapter.

With a tight confinement (F = 1.8), giving a stationary output, we measured the

intensity and the buildup times of the phase conjugate beam/3 against the pump ratio

for various values of the total pump power. The goal was to determine what values of

these two parameters gave rates of change of the observed phenomena compatible with

visual observation and standard video recording. The results are shown in figure 5.2.

For all the experiments reported here, the pump ratio was fixed at 1 and the total

power of the two pumps was kept at 60mW. Other parameters such as alignments,

four-wave-mixing geometry, etc., were fixed for all the measurements.

The field distribution in aperture H1 was imaged (with lenses not shown in Fig. 5.1)
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Figure 5.2: (a) Phase conjugate intensity/3 versus the pump ratio for various values

of the total pump power. (b) Buildup time of Ia versus pump ratio for various values

of the total pump power
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through the crystal onto three output planes. The local intensities at two different

locations in H1 were measured through ports 1 and 2 by two photomultipliers D1 and

D2. The points at which the intensities are measured were selected by two pinholes.

Both photomultiplier currents were sent to current-to-voltage amplifiers and to analog

filters before being digitized and recorded by a PC based system.

The transverse intensity distribution and its dynamics was recorded via port 3,

either by a motorized 35mm camera or a CCD camera connected to a video-tape

recorder. The same port and the same modes of recording were also used to record

interferograms of the wavefront. To do this, the field in the image plane at port 3

was made to interfere with a tilted plane wave from the same laser.

The cavity output through the phase-conjugate mirror was chosen because of its

higher intensity. It is amplified in the crystal. The transverse beam profile and its

dynamics were found to be the same in the entire volume of the cavity. This was

verified by extracting the left and right propagating cavity beams with the aid of a

low loss pellicle beam splitter, and comparing the profiles of these beams with that of

the output used for the measurments. The phase conjugate beam exiting the cavity

via the conventional mirror had also a similar transverse profile and exhibited the

same dynamical behavior.

An additional detector D3 was used to monitor the laser output and check for any

spurious correlation between the measured time series and the laser output fluctua-

tions. The output was found to be stable with occasional but very rare mode hops.

Since such events would affect the cavity dynamics unpredictably, the data would be

trashed when a mode hop occurred during the recording of a time series.

5.2 Time series, Power spectra and Phase space portraits

As we have seen in section 4.1, the state of a dynamical system changes with the

value of the control parameters, and, in some cases, the system may become chaotic.

Time series, power spectra and phase space portraits are useful tools for examining
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the dynamics of a nonlinear system.

In our experiments, time series of the local intensity containing 8,000 data points

each were recorded for various values of the Fresnel number. Some representative

examples are shown in figure 5.3. A number of characteristic transitions from order

to chaos can be identified in this figure.

For tight confinements(F _< 2), the irradiance distribution in aperture H1 observed

through the phase-conjugate mirror is uniform and the local intensity is stationary.

A first bifurcation occurs near 2 _< F < 2.2, leading to stable periodic oscillations. As

the confinement is relaxed further (2.2 _< F _< 3.5), more bifurcations occur, leading

to more complex but still periodic motions. An example is shown for F = 3.2.

Eventually, these higher order bifurcations lead the system to a chaotic state near

F _ 4. At higher Fresnel numbers (F _> 4), the nature of the dynamics appears to

change. At F = 5.8 for example, a quasiperiodic state interrupted by chaotic bursts

is being observed. Finally, at F _> 7, a new chaotic state sets in.

Time series of 8,000 points may be considered as short, especially near bifurca-

tion or threshold points where critical slowing down might take place. Longer time

series, however, would have had a much higher probability of corruption from laser

instability, instrumental drift, and mechanical relaxation.

The power spectra of the time series of figure 5.3 are shown in figure 5.4. These

spectra reveal information complementing that contained in the time series.

At F = 2.2, the motion is clearly periodic with a fundamental frequency fl=0.106Hz

and its higher harmonics. At F = 3.2, the spectrum contains, in addition to the fun-

damental frequency f1=0.132Hz, all the multiples of the subharmonic fl/3. This is

the spectrum of a period three motion. The corresponding time series indeed shows

three peaks per period.

As F is increased further and the transverse confinement is relaxed, additional

subharmonics appear. At F _ 4 however, a dramatic change occurs. The main

feature of the spectrum is now a broadband continuum, a clear sign of an irregular

signal. At low frequencies, near 0.055Hz where some new feature seems to have
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Figure 5.3: Output intensity versus time at a point within aperture H1, for different
values of the Fresnel number F. The total power of the two pumps is 60mW and the

pump ratio is 1. The time series shows (a) a stationary output, (b) stable oscillations,

(c) the emergence of subharmonics, (d) the development of chaotic oscillations, (e)

unstable oscillatory motions with intermittant bursts, and (f) another chaotic motion.

104



CHAPTER 5. EXPERIMENTS: SPATIOTEMPORAL DYNAMICS IN PCRS

" ¢ * r ' ' ' I ' I ' I +-
r !.1

- i A 2!" 3., (a)F=2.2_
:32- [l_li,+ ,11 _ 11 5+i 6 f i

-6 ' h, ,, ....... ,.,,_,ll...... .J. I ....

0 co 0.2 0.4 0.6 0.8 I
--- '. _ leo' + ' ] ' ' ' i ' ' j , , ,

0 t+ --C'9 T+ "- "

_- t++_,__ir+/ _: l+t _ 7s,]3 (b) F=3.2_

0

mO
_-I
_-2

-3
-4
-5
-6

0
-1
-2
-3
-4
-5
-6

0.2 0.4 0.6 0.8
' I + I ' I I ' _--"

fl C i

' l '+_I ""++11P"Mll_ilMillii_.,,.t,,..t -'+--
+,Ht' '!'l++'l_t_.._.i,J=,,,,t,+,.+,,+,+,+,,_,,+.,+.+,.,..,.+._r,,,,,,_

0 = 0.2 0.4 0.6 0.8 1
"- _' o+' F ' 'o+ I ' I T I ' ' ' !

lIf_ I P, _ _ " X.'"/ F'-U,_

j,i,,,.i_lh +- at, "" i

0 0.2 0.4 0.6 0.8

Frequency (Hz)

Figure 5.4: Normalized power spectra calculated from the data of Fig 5.3 showing

(a) a fundamental frequency and its higher harmonics, (b) a fundamental frequency

and its subharmonics multiples of 1/3, (c) a broadband spectrum with the emergence

of two frequency peaks, and (d) two broadened frequency peaks and their linear
combinations.
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appeared in the spectrum, the background is nearly three orders of magnitude above

the noise floor. One can thus rule out random noise external to the system and safely

attribute the appearance of the continuum to the intrinsic dynamics of the system.

At higher frequencies, the power is seen to drop linearly in the semilog plot. This

indicates an exponential decay of the power spectrum. Such a spectral feature has

been recognised as a signature of deterministic chaos [95].

At F = 5.8, the spectral energy is mostly confined near two different frequencies,

f1=0.128Hz and f2=0.055Hz, and their linear combinations. The continuous back-

ground has not entirely disappeared, however. It is interesting to note that these two

frequencies can already be seen to emerge from the background at F = 4.1. This

identification of two frequencies, one of them being the frequency of the original limit

cycles and another, apparently unrelated, suggests a route to chaos following the

Ruelle- Takens- Newhouse scenario.

As seen in section 4.1.2, the pseudo phase space portraits provide additional infor-

mation on the dynamical state of the system. According to the Takens's embedding

theorem, a pseudo phase space portrait having the same geometrical properties as

the original one can be reconstructed from a single time series of experimental data

(section 4.2.2). Some examples of pseudo phase space portraits are shown in figure 5.5.

At F = 1.8, the phase space portrait is a simple fixed point. A limit cycle is

the portrait at F = 2.2 as shown in figure 5.5a. The width of the attractor may

be attributed to stochastic noise. At F = 3.2, a stable period three cycle appears

(figure 5.5b). The phase space portrait at F = 4.1 is an irregular distribution of

points filling up the phase space more or less uniformly (figure 5.5c). The phase space

portrait at F = 5.8 (figure 5.5d) exhibits some very interesting features indicative of

what appears to be an unstable limit cycle surrounded by a cloud of scattered points.

As seen in figure 5.6, this phase space portrait corresponds to a time series which

is nearly periodic with occasional interruptions by irregular bursts. This behavior is

compatible with the Ruelle-Taken-Newhouse scenario in which additional frequencies,

unrelated to that of the original limit cycle appear in the spectrum. In this scenario,

the bursts are interpreted as a manifestation of type III intermittency [60]. Indeed
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Figure 5.5: Phase space portraits of time series containing N=8000 date_ ;,_,ints. I(i)

is plotted versus I(i + n), with a time delay given by At = hr. r is 1t::: sampling

interval. One can identify (a)a limit cycle, (b)a stable period 3 motion, (c)an irregular

filling of phase space; and (d)an unstable limit cycle smeared by a cloud of irregularly

distributed points.
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Figure 5.6: Time series of the local intensity for F = 5.8 showing a quasiperiodic

motion interrupted by intermittent bursts.
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some of the intermittent bursts appear to show an increase and then a sudden drop

of the amplitude of a subharmonic, which is a signature of type III intermittency.

5.3 Correlation dimension and Kolmogorov entropy

We have seen in section 4.1 that a number of quantitative methods have been es-

tablished for studing dynamical systems and distinguishing deterministic chaos from

random noise. In the following, we analyse quantitatively the nature of the chaotic

motion observed with a Fresnel number F = 4.1 by calculating the correlation dimen-

sion and the corresponding entropy, using the corresponding time series, a section of

which is shown in figure 5.3d.

The Grassberger-Procaccia algorithm was used to calculate the correlation di-

mension of the experimental chaotic time series [96]. This algorithm is based on the

Takens embedding theorem according to which N vectors )_(t,_) = [X(t,),X(t,_ +

At),... ,X(tn + (d- 1)At)] of length d ( the embedding dimension) can be extracted

from the time series and used to reconstruct the attractor in a pseudo d-dimensional

phase space. The delay At = iT, where T is the sampling interval, is chosen such that

the choice of T is made according to the remarks explained in section 4.2.2.

The correlation function or second order correlation integral is then calculated as

(see section 4.2):

1 N

C2( ,d) = zm.,), (5.2)
m,r_l

d-1

where 0 is a step function and zm.,_ = __,lXn+i - Xm+il 2 is the Euclidean distance
i=0

between the pair of vectors m, n and d is the embedding dimension. The correlation

integral thus measures the number of pairs of vectors with a distance smaller than _.

From equation 4.23, the correlation integral scales with the embedding dimension as

C2(c,d) o¢ e_exp(-d_-K2). (5.3)

For large enough d and small e, the correlation exponent u becomes the correlation

dimension D2. K2 is the second order Renyi entropy. These two quantities are lower
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bounds to the fractal (Hausdorff) dimension Do of the attractor and to the information

dimension D1 (Do >_ D1 >_ D2), and to the Kolmogorov entropy IQ (I(1 > K2),

respectively (see section 4.1).

Figure 5.7 shows log-log plots of the correlation integral for values of the embedding

dimension ranging from 7 to 27. The slope of the curves, which is the correlation

exponent according to eq. 5.2, appears to converge toward what is believed to be the

value of the correlation dimension D2. The local slope, calculated using a seven point

local average of the slope of the data of figure 5.7, is shown in figure 5.8 for different

values of d. Although the plateau, which should indicate the value of D2, is not very

broad, it does seem to converge, for d > 20, toward a value approximately equal to

5.2, as shown in figure 5.9.

According to eq. 5.3, a lower bound to the Kolmogorov entropy can also be ex-

tracted from the data of figure 5.7 by calculating the rate at which the correlation

integral drops with increasing values of the embedding dimension. In section 4.2.1

we discussed briefly that the Kolmogorov entropy measures the rate of information

flow in the dynamical system and is an indication of the system's sensitivity to initial

conditions. In an ordered system, it is expected to be zero, while in a stochastic

system, it should be infinite. For a deterministic chaos, its value would be finite and

positive. Figure 5.10 shows a plot of K2 versus d. Again, for d >_ 20, the entropy

appears to converge toward a value approximately equal to 0.16 s -1.

Although the relatively large value found for the correlation dimension may pos-

sibly put in doubt the validity of the algorithm used to calculate it, both the finite

positive lower bound to the Kolmogrov entropy and the non-integer value of the

correlation dimension seem to provide some evidence for the existence of a strange

attractor for the time series at F = 4.1.
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Figure 5.7: Log-log plots of the correlation integral C2(_) versus distance _, with

increasing values of the embedding dimension d, for the chaotic output of Fig 5.7.
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5.4 Wavefront dislocations

The transverse irradiance distribution within the aperture H1 as seen through

the PCM was recorded as a function of time. As the transverse confinement of the

system is relaxed, the distribution of structures across the PCR's beams becomes

more complex, containing more and more bright lobes and dark lines around them.

At the same time, the motion of the structures also increases in complexity, changing

from a simple periodic motion to an apparently chaotic dance.

Interferograms of the wavefront were recorded to reveal the presence of wavefront

dislocations or vortices [87] (also see section 4.4). In the interferograms, the defects

should appear as a discontinuity in the interference fringes and thus should be easily

identifiable. The number of defects and the complexity of their motions in time were

found to be strongly correlated to the temporal dynamics of the time series described

in section 5.2 as well as to the spatial decorrelation of the pattern. This suggests that

the topological defects may indeed act as the catalyst for the observed spatiotemporal

dynamics and induce the observed turbulence in a manner similar to that of the so-

called topological turbulence (see section 4.3.2). In this section, we will describe how

the transverse pattern changes when the Fresnel number, and thus the transverse

confinement of the cavity, is varied.

After a first bifurcation at 2 _< F _< 2.2, the transverse pattern varies in time

in a simple and periodic way. Some snapshots of the irradiance distribution, taken

at a half second interval between frames, are shown in figure 5.11. The irradiance

distribution is at first uniform, both in amplitude and phase. This lasts for about

eight seconds, after which time a folding of the phase appears at the center of the

pattern. This is manifested by a darkening of the area. Very rapidly, a pair of defects

of opposite charge develops from this fold at the center of the pattern. The two

defects split and repel each other, swiftly moving away along diametrically opposite

directions. They finally disappear at the boundary. The presence of the defects lasts

only about two seconds or so. The wavefront then quickly recovers and remains stable

for a period of time. Then, the sequence repeats itself. Figure 5.12 is an enlarged
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Figure 5.11: Sequence of snapshots of the irradiance distribution in aperture H1 with

F = 2.2. The time interval between sanpshots is 0.5 second.
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Figure 5.12: Instantaneous interferogram with F = 2.2 showing a pair of defects of

opposite charge.
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snapshot of an interferogram obtained by interfering the output distribution with a

tilted plane wave and showing the pair of defects of opposite charge moving away

from each other and along a horizontal diameter.

As the transverse confinement of the system is relaxed, more complex behaviors

are observed. At F -- 3.6, for example, the motion of the transverse pattern is more

complex but still periodic. This explains the appearance of the subharmonics in the

time series of the local intensity (Fig. 5.3). A sequence of snapshots taken at half

second intervals is shown in figure 5.13. Figure 5.14 is an enlarged interferogram

showing three pairs of defects of opposite charge.

A number of characteristic motions of the defects were observed for 2.2 <__F < 5.

Some of them are illustrated schematically in figure 5.15. Figure 5.15a corresponds

to the motion described in figure 5.11. In fig. 5.15b, the two defects of at pair are seen

to spiral outward, away from each other, and then inward toward each other, along

trajectories of alternating handedness. Figure 5.15c describes a motion similar to that

of figure 5.13. Pairs of defects are generated at two diametrically opposite locations.

The two inner defects spiral toward each other while the other two spiral outward

and die at the boundary. The two inner defects may rebound, repel each other and

accelerate outward along a diameter. The sequence then repeats itself with other

pairs of defects originating at conjugate locations and with trajectories of opposite

handedness. Figure 5.15d shows another dance of similar nature, where several pairs

of defects are generated, move, rotate, collide, rebound or annihilate each other.

The motions described in the preceding paragraph may appear in sequence, when

the dynamics is periodic. They may also appear in an apparently random order. This

is the case for F = 4.1, which, as seen in section 5.2, corresponds to a chaotic time

series. Figure 5.16 shows some snapshots (0.5 second interval) of the nonperiodic

motion at F = 4.1. Figure 5.17 is an enlarged interferogram showing the presence of

four pairs of defects.

All the patterns with low enough Fresnel numbers have a center of symmetry. We

believe that this is a result of the particular geometry of the cavity and of the nature
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Figure 5.13: Sequence of snapshots with F = 3.6 (time interval = 0.5s) revealing a
more complicated but still periodic motion.
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Figure 5.14: Instantaneous interferogram with F = 3.6 showing three pairs of defects.
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(a)

(b)

(c)

(d)

Figure 5.15: Sketches of some typical motions of the defects observed with 2 < F < 5.
See text for details.
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Figure 5.16: Sequence of snapshots with F = 4.1 (time interval =0.5s) revealing a

nonperiodic motion (horizontal scale compressed).
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Figure 5.17: Instantaneous interferogram with F = 4.1 showing four pairs of defects.
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of the PCM. Indeed, one round trip in the cavity involves two operations: phase

conjugation and imaging with unit magnification and inversion. Thus, if a certain

distribution f(r-") exists in the cavity, another f'(-r-') should also be present, at least

in steady state.

In the range 5 _< F _< 6, drastic changes in the dynamics of the local intensity

time series were observed. Similar changes are also found in the behavior of the

defects. At F = 5.8, for example, the spatial distribution shown in the sequence of

figure 5.18 is rather complex and indeed shows more structure than the pattern at

F = 4.1 (Fig. 5.17), which corresponds to a chaotic motion. However, not all the dark

lines in figure 5.18 contains true zeros. Thus, when F = 5.8, the number of defects

is actually smaller on average and the spatiotemporal complexity is lower than when

F = 4.1. The motion for interferograms at F = 5.8 is also simpler in appearance.

Figure 5.19 shows an instantaneous interferogram at F = 5.8, where only one pair

of defects is visible. When the transverse confinement is further relaxed, the motion

becomes chaotic again (Fig. 5.3f). Figure 5.20 shows an interferogram obtained with

a Fresnel number F = 8.6 and in which about eight pairs of defects are seen as they

execute a chaotic dance.

5.5 Defect-mediated turbulence

It appears, from the observations described in figures 5.11 to 5.20 and the corre-

sponding results of section 5.2, that the presence and the motion of singular points in

the wavefront ( the phase defects or vortices ), where both the real and the imaginary

parts of the field vanish and the phase is indeterminate (see section 4.4), may be

responsible for the loss of spatiotemporal coherence. According to the Coullet conjec-

ture, this in turn may induce turbulence in weakly coupled systems [79, 78, 80, 97].

In order to further illustrate the correlation between the number of defects and the

spatiotemporal dynamical behavior of the system, the following two measurements

were made.

The temporal evolution of the interferograms obtained with increasing Fresnel

124



CHAPTER 5. EXPERIMENTS: SPATIOTEMPORAL DYNAMICS IN PCRS

Figure 5.18: Sequence of snapshots with F = 5.8 (time interval = 0.5s) revealing a

more complicated pattern but executing a simpler motion
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Figure 5.19: Instantaneous interferogram with F = 5.8, showing only one pair of

defects.

126



CHAPTER 5. EXPERIMENTS: SPATIOTEMPORAL DYNAMICS IN PCRS

Figure 5.20: Instantaneous interferogram with F = 8.6 showing at least 8 pairs of

defects executing a chaotic dance.
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Figure 5.21: Maximum number N of defects observed in the transverse pattern at any

given time versus Fresnel number F. The expected scaling law N c¢ F 2 is interrupted

in the region 4 < F < 6.
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numbers were video recorded with a standard CCD camera and examined frame by

frame to determine the maximum number of defects appearing in the pattern at any

instant of time. The result is shown in figure 5.21. There are two regions, 2 _< F < 4

and F > 6, where the maximum number of defects appears to grow as the square of

the Fresnel number. This dependence is what is expected if, using simple diffraction

arguments, F 2 is interpreted as being a measure of the maximum number of speckles

( or of bright lobes ) within a cross section of the beam. The number of true zeros

between the bright speckles is expected to be of the same order as the number of

speckles, at least for large numbers [91, 87].

In addition, the temporal fluctuations of the local intensity were recorded at two

different locations in aperture H1, and a spatial correlation index [98] was calculated.

The spatial correlation function is defined as

with

N

_[i(7,,,_)- ,_(7,)][I(T5,,_+ r)- i(72)]
c(_,, TS,r) = _='

s(_i)s(_i) , (5.4)

s(_) = [:(_J,,_)- i(_)] 2 , (5.5)

where 71, 72 are the two locations in the wavefront where the local intensity fluctua-

tions are measured, ](_'j) is the time averaged intensity at _, n and F are the running

time and time delay, respectively, measured in units of the sampling interval r.

In the experiments, the local intensity fluctuations were measured at two points

only, distant by approximately one half the diameter of aperture HI. A spatial cor-

relation index can then be defined as

K(1¢1 - 7_1)= MaxC(¢i, 72,r), Yr. (5.6)

The correlation index runs from 0 to 1. It is high when the fluctuations at 71 and

72 are highly correlated. It is equal to one when the fluctuations at 71 and 72 differ

only by a time delay, as one would expect if a transverse wave sweeps through the

pattern. It drops to small values as the fluctuations at 71 and 72 become decorrelated.
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Figure 5.22: Spatial correlation index versus Fresnel number F. Comparison with

Fig. 5.21 reveals the relationship between the spatial correlation and the number of

defects.
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The result is shown in figure 5.22. The interesting point is the correlation between

the index K and the number of defects (which measures the degree of spatial com-

plexity), as the Fresnel number increases (i.e. , as the confinement of the system is

relaxed). At first (Fig. 5.22), the correlation index drops, as one would expect. Near

F -,_ 4, where the first chaotic state appears, the correlation index drops drastically

to a small value. In the range 4 < F _< 6, where the spatial complexity, as measured

by the number of defects decreases (Fig. 5.21), the spatial correlation index is seen to

increase (Fig. 5.22). The correlation index reaches a local maximum at exactly the

same Fresnel number (_,- 5.8) that leads to a local minimum in the number of defects.

These observations seem to indicate that the loss of spatiotemporal coherence and the

subsequent onset of turbulence in the phase-conjugate resonator is indeed mediated

by the dynamics of the phase defects appearing in the wavefronts.

5.6 Modes superposition

Some of the transverse patterns observed are reminiscent of the common trans-

verse electro-magnetic modes of a laser cavity. It is interesting to try to correlate our

observations with the dynamical behavior of a few superposed cavity modes. The

simpler motions observed at low Fresnel numbers could be interpreted as a sequential

succession of a few modes of low order similar to the alternation described in refer-

ence [99]. This interpretation seems to be confirmed by the high spatial correlation of

these patterns. In addition, we have observed that the introduction of selective losses

in the cavity can be used to suppress the oscillation of certain modes and lock the

beam into an almost stationary pattern. At higher Fresnel numbers, when the motion

becomes chaotic, the lack of spatial correlation seems to point to the coexistence of

a number of uncorrelated modes as opposed to the alternation of modes of higher

orders. The highly structured pattern observed at F ,-, 5.8, with its higher spatial

correlation and smaller number of defects, may however be due to the superposition

or alternation of a small number of modes of higher orders.

It is intriguing to ask whether a superposition of several modes with different
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frequencies could produce patterns in which the defects would move around in a

manner similar to the motions described in section 5.4.

As an illustrative example we used a superposition of three Gauss-Hermite modes

of the form

Em,_(x,y;t) = Am_Vm g,, exp i(hm,_t + ¢m_) w% j,

where the Uj's are Hermite polynomials, w is the beam "waist", ¢m,_ = (m + n + 1)7/

and rI = _'/3 (arbitrary choice), 5m,_ is the frequency detuning and A,,_ is the weight

of mode mn [94].

We chose the three modes TEM 01, 10, and 20 with respective weights 1, 1, 1/3

and respective detuning 1/2, 1, (Vr5 + 1)/2. A sequence showing the evolution of the

pattern in time is shown in figure 5.23. The shaded regions are the bright spots and

a and b indicate the position of the roots of Re(E)=Im(E)=0, where the defects

are located. The arrows show the directions of their motions. Figure 5.24a shows the

motion of the two conjugate defects projected on a plane. Starting at point A for

defect a (solid dots) and B for defect b (empty squares), the following motions are

observed. At first, defect a rotates slowly counterclockwise near the center the field,

while defect b accelerates upward, disappears at the upper right, reappears at the

upper left corner and swiftly moves down across the field. This motion is labeled 1 in

Fig. 5.24a. Next (motion labeled 2), defect a , still moving slowly, changes direction

and starts upward while defect b disappears at the bottom left and reappears at the

bottom right. Defect a then accelerates out at the top left, reappears at the top right

and rapidly crosses the field toward the bottom left, while defect b starts executing a

slow clockwise rotation near the center of the field. In a certain sense, the two defects

have exchanged their roles but with antisymmetrical motions. This type of motion

continues, leading to the path diagram shown in figure 5.24b.

Another interesting illustration given here is a scalar wave _b(r, t) combining the

three modes TEM 00, 01 and 20 with fixed relative phases. For example, ¢ =

al(t)U2o + a2(t)Uoo + iaa(t)Um, where ai(t)'s are real functions of time. This ex-

ample shows two opposite charge defects moving apart along the x-axis as seen in
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Figure 5.23: Sequence of patterns at equal interva]s of time obtained by the superpo-

sition of three Gauss-Hermite modes of order 01, l0 and 20 with respective weighting

coefficients 1, 1, 1/3 and respective detunings 0.5, 1, (v/-5+ 1)/2. Letters a and b in-

dicate the locations of the two conjugate defects and the arrows show their directions
of motion.
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Figure 5.24: Motions of the two conjugate defects seen in fig. 5.23 projected on a plane.
The defects locations are solutions of ReE=ImE=0 where E is the field amplitude

resulting from the superspoition of the three modes of Fig 5.23. Short time motion

(see text for details) in top diagram, long-time defect trajectories in bottom diagram.
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Figure 5.25: Computer-generated snapshots of an interferogram with a spherical ref-

erence wave: before the nucleation of the defects (top diagram); while a defect crosses

the vertex of the spherical wave (bottom diagram).

135



CHAPTER 5. EXPERIMENTS: SPATIOTEMPORAL DYNAMICS IN PCRS

experiments with a Fresnel number F = 2.2 (figure 5.11). Figure 5.25 shows a com-

puter generated interferogram of the wavefront with a spherical wave. Figure 5.25a

shows the interferogram of the uniform wavefront with no defect. It displays typical

Newton's rings. A short while later, two defects appear at the center and move apart

along the x-axis. Figure 5.25b shows the interferogram of the wavefront at the time

when one of the defects crosses the reference spherical wave. The spiral fringes reveal

the spiral nature of the wavefront. As the defect disappears at the boundary, the com-

plete rings are recovered again. A similar behavior was observed in the experimental

recordings for F = 2.2. Figure 5.26 shows snapshots of interferograms obtained by in-

terfering the cavity beam with a spherical reference beam from the same laser. When

one of the defects passes through the vertex of the spherical reference wave, it creates

spiral fringes.

These examples are presented for illustrative purposes only. They show that the

superposition of a few low order modes, with appropriate weights and detunings, can

produce a great variety of patterns and defect motions, some of them resembling

qualitatively what is being seen in the experiments, but they do not prove that this

is the correct representation. We will explore this modal superposition approach to

represent the spatiotemporal dynamics in a PCR in the next chapter.

5.7 Discussion and conclusion

As mentioned in chapter 1, phase conjugation via four-wave mixing in BaTiOa is

known to be itself unstable in some regions of parameter space, leading to a pulsating

or chaotic phase-conjugate beam [22, 27]. These instabilities appear to be related

to the existence and competition of several gratings in the crystal. In addition, self-

phase-conjugation of pump two, which is readily observed in BaTiO3 , produces a

feedback to the laser which can also cause instabilities. Two different tests were

made that lead us to believe that these two factors did not play a major role in the

experiments.

Four-wave mixing without the cavity (mirror M removed) and with an external
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Figure 5.26: Experimental snapshots of the interferograms of wavefront containing a

pair of defects with a spherical reference wave: before the nucleation of the defects (top

diagram); while a defect crosses the vertex of the spherical reference wave (bottom

diagram).
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probe beam was tested for parameter values comparable to these used in the exper-

iments. In all cases, the phase-conjugate beam was found to be quite stable. This

appears to indicate that the observed dynamics is that of the phase-conjugate res-

onator, which of course involves a possibly complicated nonlinear interaction with

feedback between the resonator and the photorefractive crystal, rather than that of

the four-wave mixing process. Furthermore, PC instabilities often require a rather

high coupling constant (3'I _ 6 in Ref [22]). In our crystal, the coupling constant was

estimated to be between 2 and 3 only (see chapter 3).

Tests were also made to detect the presence of self-pumping. With pump two alone

incident on the crystal, strong self-phase-conjugation was observed. The presence of

self-pumping is easily revealed by the usual beam fanning and internal reflections

in the crystal. The feedback of the self-conjugated pump beam into the laser did

cause some instability of its output. However, as soon as pump one was turned

on, the fanning died out, the path of pump two straightened out inside the crystal

and the self-conjugated beam intensity dropped to negligible values. Apparently, the

presence of pump one did effectively erase all the extraneous gratings responsible for

self-pumping. The same transverse patterns and dynamical behavior were observed,

confirming that feedback due to self-pumping was negligible in our experiments and

was not influential in our data.

In summary we have studied some aspects of the spatiotemporal dynamics of a

phase-conjugate resonator. The control parameter was the resonator Fresnel number.

Time series of the local intensity fluctuations were recorded and analysed by means

of spectral analysis and embedded phase space portraits. A number of occurrences

characteristic of low dimensional dynamical systems were observed, i.e. in order of

increasing control parameter: a bifurcation from a stationary to a periodic state,

followed by more subharmonic bifurcations; the occurrence of a chaotic state char-

acterized by the appearance of a continuous background in the power spectrum; the

appearance of an additional frequency unrelated to the fundamental frequency of the

periodic motion; the occurrence of intermittency; and the final development of what

appears to be a fully turbulent state.
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The occurrences of these events were found to be quite reproducible, providing

some evidence for the presence of a deterministic chaotic state of the cavity field.

Further evidence is given by calculating the correlation exponent and the Kolmogorov

entropy at a Fresnel number leading to a chaotic time series.

The spatial complexity of the pattern was studied by video recording and by

interferometry, revealing the leading role played by the wavefront dislocations or vor-

tices. The number of phase defects and the spatial correlation index of the wavefront

were observed to follow similar trends as the transverse confinement of the system

was relaxed. This suggests that the spatiotemporal chaos of the cavity field may be

mediated by the phase defects.

139



Chapter 6

A model of spatiotemporal

dynamics in PCRs

6.1 Introduction

In this chapter we present a truncated modal expansion approach to model the

spatiotemporal dynamics of a PCR. Nonlinear dynamical problems that include the

transverse dimensions and are described by systems of partial differential equations

(PDEs) remain a theoretical challenge and do not benefit from well established

experimental methodologies [100] as do systems of ordinary differential equations

(ODE) [60, 101]. Furthermore, their numerical analyses require large computational

budgets [56, 102]. We will test a relatively simple mathematical scheme to represent

the transverse dynamics of the PCR without requiring prohibitive computational

budgets.

This chapter has two aims. The first is to describe and establish the soundness

of a somewhat arbitrary yet sensible modal decomposition approach to study the dy-

namics of PCRs with modest Fresnel numbers. This is done by comparing numerical

results with actual experimental data. The hope is that this comparison, although

complicated by the difficulty in measuring experimental control parameters exactly
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and by the problematic effect of stochastic noise, will prove sufficiently convincing to

confirm the usefulness of the approach. The second is to illustrate the relationship

existing between the dynamics of the optical vortices observed in PCRs [87, 88, 86]

and the spatial correlation of the oscillating beam.

The chapter is organized as follows: The PCR's equations and boundary con-

ditions within approximations compatible with experimental conditions are stated

in section 6.2.1. Arguments justifying the modal expansion approach are given in

section 6.2.2 and the method is then used to arrive at a set of modal amplitude equa-

tions. In section 6.3, a particular set of parameter values is chosen and the system

is integrated, using the off-Bragg detuning as a control parameter. Different dynam-

ical behaviors are identified from local time series, power spectra and phase space

portraits. Examples of vortices' motions and spatial correlation maps are given in

section 6.3. Experimental results are presented and discussed in section 6.4 and a

summary is given in section 6.5.

6.2 The modal expansion model

6.2.1 Phase-conjugate resonator

The PCR is sketched in fig. 6.1. Its active element is an externally pumped

photorefractive medium acting as a PCM. Maxwell's equations for the optical field in

the medium lead to the following coupled equations (see Appendix A):

2k +]c''v+_+_ Al(x,y,z,t)=-Q(z,y,z,t)A4(x,y,z,t)e ibz, (6.1)

- 2---k--+_:2"V+c_+_-_ A2'(x,Y;'_,t)=Q(x,Y,z,t)m3[x,y;t,t), (6.2)

2k + ]ca. V + _ + _ ma(x,y,z,t) = -Q(x,y,z,t)A2(x,y,z,t), (6.3)

( iV_ O)- 2----_--+]¢4.V+a+70- 7 A4'(x,y;,_,t)=Q(x,y,z,t)Al.(x,y;:_,t) e ibz, (6.4)
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mirror M lens L

Figure 6.1: Four-wave mixing in a photorefractive phase-conjugate resonator (PCR):

A1, A2 are two gaussian pump beams; A3, A4 are the left-going and the right-going
beams inside the PCR; mirror M allows feedback of field back into the phase-conjugate

mirror (PCM); apertures H1 ,H2 confine the transverse dimensions of the propagating

beams.
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where, in spirit of the slowly varying envelope approximation, the field in the medium

is written as
4

E(x,y,z,t) = + c.c., (6.5)
i=l

v = c/fi is the speed of light in the medium, fi is the average refractive index. ]¢j are

unit vectors pointing in the direction of the four wavevectors in the medium. The

wavenumber is kj = _o/v, where w is the angular frequency of the pump and o_ is the

linear absorption coefficient. VT is the transverse gradient operator. The parameter

b is the wavevector mismatch (momentum mismatch along the z-axis) measuring

the departure from the Bragg condition. This off-Bragg parameter is introduced as

a means of varying the amount of phase transfer between the waves mixed in the

nonlinear medium and is later taken as the control parameter.

The equation for the phase grating Q is derived from the standard band trans-

port model of Kukhtarev [103] and reads, in the single grating approximation (see

Appendix B),

OQ(x,y,z,t)

r, Ot + CQ(x,y,z,t)= (6.6)

%C ( Al(x'y'z't)A_(x'y'z't)eib_ + A_(x,y,z,t)Aa(x,y,z,t))Io(z,v,z,t)

where C = [Eo + i(Eq + ED)]/[Eo + i(EM + ED)].

The boundary conditions for the wave equation in the medium are determined by

the cavity geometry. The transverse confinement of the cavity is controlled by two

square apertures H1 and H2 of sides 2avcm and 2am respectively. The first aperture is

located near the phase-conjugate mirror in the front focal plane of the lens (fig. 6.1).

The second one is in the back focal plane of the lens next to the planar mirror. The

transverse confinement is measured by the cavity Fresnel number defined as

F = 4amapcm/)ff, (6.7)

where A is the wavelength in vacuum and f the focal length of the lens.

One cavity round trip, starting at the PCM, consists of a truncation by H1 and

imaging in a 4-f afocal system with a pupil H2. Thus, the amplitude A4 is proportional
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to the truncated convolution of A3 with a point-spread-function which is the fourier

transform of the aperture H2. According to Fourier optics [104], the field at the plane

of the mirror M, £(x,y,-L+,t), is proportional to the convolution of the Fourier

transform of the field Aa(x, y,0 +, t) at the exit plane of the crystal and the Fourier

transform of the square aperture H1, i.e.

L)- eik°L 2a_cm ]£(x'y'-L+'t+--c i_f F{A3(x'y'O+'t)}*F{rect( X_)rect(2apcm )} , (6.8)

where feet(x/2) =1 for -1 < x < 1 and = 0 otherwise. The field is then mirror

reflected and truncated by the aperture H2 such that

L L -x -y

g(x,y,-L*,t + c): rE(-x,-y,-L*,t + c) • rect(2_-m)rect(2--_-m),
(6.9)

where r is mirror M's reflectance coefficient.

The field ,f.(r, y, 0-, t + _-) is a multiplicative of the inverse Fourier transform of

£(x,y,-L +,t + £), i.e.
c

E(_,y,o-,t + 2L)
C

_ eikOLF_l{g(x,y_L+ t + L)} (6.10)
jAf c

ei2koL= a_f_ A3(-x'-Y' °+' t) rect(2apcm--x)rect(2apcm-y )]J

* [4a_sinc(2amx)sinc(2amy)],

where sinc(x) -- sin(Trx)/(Trx).

Thus, we can write the input field A4(x,y, 0 +, t) in terms of the outgoing phase

conjugate beam Aa(x, y, 0 +, t) in the following way:

2L ei2k°L II//+a"_" 0 + t)sinc [2am(x' + x)](6.11)A4(x,y,O+,t +--) = -4a_r A3(x',y', ,
C _---_JJ--apcm L Af J

sine "2am(y' + y) dx'dy',
Af
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Using the resonator Fresnel number F = 4amavcm/A f and normalizing the trans-

verse coordinates to the aperture size avcm, we find

+ 2L) = _r(F/2)2ei2kon//_+lAa(x,,y,,O,t)sinc[F(x ' + x)/2] (6.12)A4(x,y,O,t
C 1

sinc [F(y' + y)/2] dx'dy',

where x = x/avcm,y = y/apcm (x and y are the real physical dimensions).

6.2.2 Modal decomposition

The direct integration of equation 6.1- 6.6 requires a large computational bud-

get. Furthermore, calculations taking only one transverse dimension into account,

although showing interesting dynamical behaviors (e.g. ref. [105]), fail to reveal the

crucial role played by the phase defects in mediating the spatiotemporal dynamics of

the PCR [87, 88, 86].

Modal decomposition is a powerful tool for studying systems of PDEs [106]. This

approach allows one to reduce an infinite dimensional problem to a finite (hopefully

low) dimensional problem described by a system of ODEs for the modal coefficients.

The success of the method relies on the assumption that the dynamics is fairly well

described by the interaction of a small number of active spatial modes. The main

difficulty resides in the choice of appropriate basis functions for the expansion. They

must accurately represent the spatial structure of the active modes. However, this

structure is generally difficult to identify a priori and one often relies on the choice

of a "sensible" basis rather than trying to identify the exact optimal basis.

In optical resonators with relatively small Fresnel numbers, this assumption ap-

pears to be justified. The dynamics of these systems is indeed dominated by a few

active modes and the Gauss-Laguerre or Gauss-Hermite modes of the empty res-

onator seem to be reasonable basis functions to replace the optimal ones [75]. Of

course such a practice introduces a degree of arbitrariness since a small number of

modes of the sensible basis may not be sufficient to adequately represent the spatial

structure. Nevertheless, the resulting enormous reduction of computational budget
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and the physical insight that can be gained justify further tests of the validity of this

approach.

The cavity fields Aa and A4 in the nonlinear medium (0 _< z _< d) are thus

expanded in series as

A3(x,y,z,t) = _ f3m,_(z,t)u*_(x,z; zo)u_(y,z; Zo)
mln

(6.13)

A4(x,y,z,t) = __, f4,,_(z,t)um(x,z;zo)u_(y,z; zo) (6.14)

and the Gauss-Hermite modes are chosen as a sensible set for the decomposition:

(2) 1/4 ( V/2X _um(x,z;zo) =-- (6.15)\w(z)/

exp w2(z ) z2-2-_(z) -t- i(m q- 1/2)tan-l(z/Zo) ,

where Hm are Hermite polynomials. The beam radius is w(z) = Wo(1 + z_/z2o)l/2, its

radius of curvature is R(z) = z(1 + z2o/z2), zo = rcw2ofi/_ is the Rayleigh distance

and k = 2rfi/l is the wavenumber in the medium. The waist wo is located at the

entrance face of the PCM (z = 0).

The pump beams are Gaussian, with a waist wp chosen appreciably larger than

Wo, and for simplicity are assumed to make a very small angle with the z-axis. Thus,

Al(x,y,z,t) = fl(z,t)U(x,z)U(y,z) (6.16)

(6.17)

the pump beams are

A2(x,y,z,t) = f2(z,t)U'(x,z)U'(y,z)

where U(x,z) = Uo(X,Z;Zp) and zp = 7rw]fi/_.

The series in equations 6.13, 6.14 are infinite and the problem remains infinite

dimensional. Because of the cavity transverse confinement however, we expect that

only the modes with indices smaller than some upper bound will take a significant

part in the dynamics. The cavity Fresnel number defined by equation 6.7 is a measure

of the amount of transverse spatial information that the cavity can accommodate (F _

is the space-bandwidth product of the cavity). It is thus reasonable to assume that
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only the modes with indices smaller than F will play a dominant role in the wave

interaction in the PCM since they are the modes which are most likely to survive in

the cavity. It must be stressed however that choosing which modes to include in the

dynamics is somewhat arbitrary. Only a comparison with experiment can provide

an a posteriori justification of this choice. The important point is that the series of

equations 6.13, 6.14 can often be limited to a small number of terms while still giving

results which agree at least qualitatively with observations, as will be shown in a later

section.

Equations 6.13- 6.17 are substituted in 6.1- 6.6 and use is made of the fact that

the Gauss-Hermite modes are solutions of the Helmholtz equation:

2k + Oz um(x,z)u_(y,z)=O, (6.18)

and satisfy the biorthogonality relation [94]

f z) = (6.19)

A final set of differential equations is then obtained for the modal amplitudes:

of,(z,t)
Oz +(_fl(z,t) = -e-'bz_ff_f4,,_(z,t)hmn(z,t), (6.20)

of;(z,t)
Oz = -

m_T].

of 3mn(z,t)
Oz af3m_(z,t) = f2(z,t)hm,_(z,t),

Of_*_,_(z,t)
+ af_,_(z,t) = e-ibZfl(z,t)hmn(z,t),

Oz

(6.21)

(6.22)

(6.23)

where

hm,_(z,t) = If+-2 dxdyQ(x,y,z,t)um(x,z)u_(y,z)U'(x,z)U*(y,z) (6.24)

is the overlap integral of the pump and the projection of the grating Q onto the mode

(re,n).
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The grating equation 6.6 is likewise projected onto the cavity modes to obtain

Oh,,,_(z,t)
T + Ch,,_(z,t)= (6.25)

Ot
* Z../oC {eibz fl(z,t ) _ f_k,(z,t)Gktmn( ,t) + ];(z,t) __, f3ktGktm,_(z,t) },

k,l k,I

with

u*k(x, z)u_(y, z)um(x, z)un(Y,z)lU(x, z)[21U(Y, Z)12dxdyck,m.(z,t)=/f+_f (6.26)
Io(x,y,z,t)

and the total intensity Io(x, y, z,t) is calculated using equations 6.13, 6.14, 6.16, 6.17.

For the case of strong pumps and large pump width (we can call this the zeroth

order approximation), Gktm,_ in equation 6.26 becomes approximately a delta function

5kmSt,_ such that the grating equation becomes

Oh,_,(z,t) (6.27)r + Chmn(z,t) = 7oC
Ot

{FbZfl(z,t)f_,(z,t) + f;(z,t)f3m,},

It seems that as the coupling terms in the sums of the right hand side of equation 6.25

have been taken out in this approximation, the projection of the grating Q onto each

mode (m, n) contributes mainly to the corresponding mode (re, n). However, cou-

pling still occurs through the factors fl and f_ which are linked to all participating

modes as shown in equations 6.20 and 6.21. Thus, in spite of the fact that coupling

through Gkl,_ is eliminated in the strong pumps and large pump width approxima-

tion, coupling between modes remain in equation 6.27 due to factors fl and ]'2, unless

if the pumps are so strong that fx and ]'2 are about constant. We may regard this

so-called zeroth order approximation as appropriate to the spatiotemporal dynamics

with weak coupling in PCR.

The integration of equations 6.20- 6.26 is greatly simplified if the interaction length

in the PCM is shorter than all the beams' Rayleigh distances:

d << Zo, zp. (6.28)

In this case, diffraction can be neglected in the medium, and the interacting beams'

modes, normalized to the aperture size apcm, take the simple form:

(1)114 (_o)1/2um(x,Z;Zo) _ u,_(x) = _ H_(_oX)e -'_'/2, (6.29)
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with/30 = v'_apcm/Wo. The pumps are gaussian with a parameter/3p = v/2apcm/wp.

The boundary conditions for the modal amplitudes at z = 0 are found from

equation 6.12 using the modal decompositions 6.13, 6.14. They read, without the

unimportant phase factors in eq. 6.12,

with

f4mn(O,t) = rr_ y_ f3kt(O,t)IkmI_,_,
k,l

(6.30)

lIkm = dxTYk(x)um(x), (6.31)
1

and

/_H dx'uk(x')sinc[F(x' + x)/2]. (6.32)gk(x) = 1

The algorithm of the adiabatic elimination method described in section 3.1.2 was used

to solve the system of equations 6.20- 6.26 with the boundary conditions 6.30- 6.32.

Some results are illustrated in the next section.

6.3 Numerical results

Phase transfer between interacting beams in the four-wave mixing process appears

to be a desirable condition for the observation of non-trivial dynamics with reason-

able values of the coupling parameter. For example, the onset of instabilities in ring

resonators with injected signals has been shown to depend sensitively on this param-

eter [24]. In a material having a real coupling parameter and no external field, this

phase transfer can be the result of an angular mismatch of the pump beams. For

the simulation presented in this section, the control parameter was chosen to be the

phase mismatch bd (off-Bragg parameter), where b is the momentum mismatch along

z and d is the length of the nonlinear medium.

We have shown in the last chapter that the dynamics of the PCR strongly depends

on the cavity Fresnel number. Increasing the Fresnel number relaxes the transverse

confinement of the system and allows higher order modes to take part in the dynamics.

As a result, the spatial complexity of the beam increases. In particular, the number
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of vortices increases and their motion becomes more complex, eventually leading to

chaotic states and, in the limit of large Fresnel numbers, to spatiotemporal turbulence.

The example shown in the next section is for a Fresnel number F = 3.5. This is small

enough so that only a few modes are expected to take part in the dynamics, yet it is

large enough to exhibit a wide range of behaviors.

Experiments carried out with Fresnel numbers between 3 and 4 reveal a transverse

pattern in which two pairs of defects of opposite charges repetitively nucleate, move

along symmetrical trajectories, spending much time in some circular zone centered on

the beam and disappear at boundaries or collide and annihilate each other [88]. Based

on these observations and in order to keep the computational budget to a minimum,

it was decided to limit the expansions in eqs. 6.13, 6.14 to four modes only, namely,

(rn,n) = (0,0), (1, 1), (2,0), and (0,2) with a beam waist Wo = a_cm = 1.

As already mentioned, there is a certain degree of arbitrariness in this choice. How-

ever, with a Fresnel number of 3.5, it is unlikely that modes with indices higher than

3 can survive in the cavity and play a significant role in the dynamics. Indeed, when a

mode of higher index (8, 0) was initially added to the series of (0, 0), (1, 1), (2, 0), (0, 2),

the simulation showed that the amplitude of mode (8, 0) decays and vanishes with

the other transients. Another reason for limiting the expansion to these particu-

lar four modes is that it allows the calculation of the vortices' positions to be done

algebraically rather than numerically, thus saving CPU time. Finally, simulations

run with different choices of modes, although giving results which differ in details,

revealed the same generic range of behaviors.

The other parameters of the model are chosen as follows: 3'd = -10,o_d =

0.15,f_o = v/2,_, = V_/IO, ED = lkV/crn, Eq = 5kY/cm, EM = lOOkV/cm, Eo = O,

and the pump beam intensity coefficients are f](z = O) = f_(z = 0) = 0.5. As an

initial condition, it is assumed that the four modes are excited from white noise and

have initial modal amplitudes f4mn(t = 0) = 10 -4.
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6.3.1 Local intensity fluctuations

The local intensity of the cavity field A4 measured at the exit face of the PCM was

chosen as a variable because it is easily accessible experimentally. The local intensity

I4(xo, yo, d) was calculated at (xo, go) = (0.75,0.15) in a region where experiments

indicate that the intensity fluctuations have a deep modulation. Figure 6.2 shows

short sections of time series of the local intensity fluctuations for different values of

the off-Bragg parameter. Time in fig. 6.2 is normalized to the relaxation time r r of

the photorefractive grating (r' = I[Eo + i(EM + ED)]/[Eo + i(Eq + ED)]Irl, see eq. 6.6).

After the transients have vanished and a stationary state has been reached, the

local extrema of these time series were recorded and used to construct the bifurcation

diagram of fig. 6.3. For small Bragg mismatch (]bd I < 2.4) the motion is periodic.

Unstable oscillations occur in a wide range of parameter values (2.4 < ]bd] < 3.6).

In most of this range the motion appears to be quasiperiodic. Some regions of the

bifurcation diagram seem to be more chaotic than others and there exist narrow

windows in which the motion appears to be periodic, usually with a large number

of subharmonics. For Ibd I > 3.6, the motion is periodic again and eventually, with a

sufficiently large mismatch, the only stable state is/4 = 0.

The time series of fig. 6.2 were chosen to illustrate these various types of motion.

The corresponding power spectra shown in fig. 6.4 give a fair indication of the dy-

namics of the system. Additional information can be gained by reconstructing pseudo

phase space portraits such as these shown in fig. 6.5, which are plots of the imaginary

part of the field A4(xo, Yo, d) versus its real part.

At bd = -2.3, the motion is clearly periodic with a frequency fl slightly larger

than 1/2 of the relaxation rate of the grating (fig. 6.4a), and the phase space portrait

(fig. 6.5a) is a limit cycle. At bd = -2.45, a second characteristic frequency f2, about

1/10 of the grating relaxation rate, appears and modulates the time series (figs 6.2b

and 6.4b). For this value of the off-Bragg parameter, the two frequencies are (rela-

tively) incommensurate and the motion is quasiperiodic with the phase space portrait

shown in fig. 6.5b. At bd = -2.55, the low frequency modulation deepens (fig. 6.4c)
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Figure 6.2: Time series of local intensity 14 for different values of the off-Bragg pa-

rameter bd showing a sequence of dynamical states including periodic, quasiperiodic

and chaotic states.
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Figure 6.3: Bifurcation diagram of the local intensity/4 at a point of the beam cross-

section in the exit plane (z = d) as a function of the off-Bragg parameter bd. Other

parameter values used are: 7d = -10, ad = 0.15, F = 3.5, flo = 1,tip = 0.1,f_(z =

O) = f_(z = d) = 0.5, f_mn(t = O) = 10-4, (re, n) = (0,0), (1, 1), (2,0), (0,2).
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Figure 6.4: Power spectra of the time series of fig. 6.2 illustrating the dynamics as

the off-Bragg parameter bd is varied. (a) a periodic motion with a single frequency,

(b) quasiperiodic motion with two (relatively) incommensurate frequencies, (c) same

with more energy in the side bands, reflecting the deeper modulation of fig. 6.2c, (d)

broadening of the two frequency peaks and their harmonics with the appearance of

an additional low frequency leading to chaotic motion, (e) two frequency peaks of

commensurate ratio corresponding to frequency locking at period 13.
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Figure 6.5: Phase space portraits corresponding to the local time series of fig. 6.2 with

the real part of the field amplitude A4 plotted versus its imaginary part. It shows

(a) a limit cycle, (b) a two frequency torus, (c) a thicker two frequency torus, (d) a

diffuse broken torus, (e)a 13 loops limit cycle indicating frequency locking.
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and more energy shifts toward higher harmonics of fl and linear combinations of the

two main frequencies (fig. 6.4c). The phase space portrait still shows some structures

although it will eventually densely fill a region of phase space since the two frequencies

are still incommensurate. At bd = -2.75, the time series is more irregular, possibly

chaotic (fig. 6.2d). There are still two main frequencies but the spectrum is broadened

and shows a number of additional peaks indicating the presence of a third frequency

about 1/100 grating relaxation rate (fig. 6.4d). The phase space portrait of fig. 6.5d

is diffuse and shows no apparent structure. At bd = -3.18 a phenomenon akin to

frequency locking occurs. The two larger frequencies pull each other so as to become

rational. The very low frequency, which seems to have appeared only to allow this

locking to occur, disappears. The spectrum of fig. 6.4e shows a ratio fl/f2 =13. The

periodic motion with 13 subharmonics is confirmed by the closed loop phase space

trajectory of fig. 6.5e.

6.3.2 Vortices and spatial correlation

The local intensity fluctuations offer a convenient means of comparing model pre-

dictions with experimental data but this information is not sufficient to fully charac-

terize the spatiotemporal dynamics. The aim of this section is to illustrate the role

played by the phase defects (vortices) in mediating the dynamics.

The vortices appear where the real and imaginary parts of the field amplitude

vanish simultaneously. For example, fig. 6.6 shows a snapshot of the beam ampli-

tude cross-section IA4(x,y,d)] for bd = -2.45, which exhibits four dark spots. The

corresponding phase contour diagram of fig. 6.7 clearly identifies these spots as two

pairs of vortices of opposite charges (-4-1). In time, these vortices nucleate, move

around, annihilate each other or disappear at boundaries. This is the motion of the

vortices which gives rise to the local intensity fluctuations described in the previous

section. This section gives a more detailed illustration of the spatial aspect of the dy-

namics and attempts to identify the spatial features responsible for the characteristic

frequencies observed in the local times series.
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Figure 6.6: The profile of the absolute value of the field amplitude ]A41 showing four
holes in the beam cross-section.
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Figure 6.7: Phase contour map corresponding to the amplitude map of fig. 6.6 clearly

identifies the four holes in the wavefront as two pairs of vortices of opposite charges

(+1).
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Figure 6.8: Time evolution of the modulus of the field amplitude A4 along a line z = 1

for different values of the off-Bragg parameter bd, showing (a) a synchronized periodic

motion, (b) a periodic motion with transverse modulation, (c) a quasiperiodic motion,
(d) a turbulent flow, (e) another periodic flow.
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Figure 6.8a to e shows the temporal evolution of the modulus of the field amplitude

A4(x = 0.75, y, d) along a line across the beam for the same off-Bragg parameter values

used in figs. 6.2, 6.4, 6.5. For a small offset (bd = -2.3), all points across the line

execute synchronized periodic motions with a period a bit smaller than two grating

time constants (fig 6.8a). In 2-D, the phase of the wavefront is observed to breathe

periodically together with the amplitude but the phase gradients produced are not

steep enough to trigger the nucleation of defects.

At bd = -2.45 (fig 6.8b), the periodic motion is transversely modulated with a

period of the order of 10 grating time constants. This spatial motion gives rise to

the quasiperiodic time series of fig. 6.2b. In 2-D, the phase gradients are locally

steep enough to tear the wavefront at locations where two pairs of defects of opposite

charges nucleate. The four vortices then travel across the wavefront, and pairs of

opposite charge collide and annihilate. The higher frequency of the time series seems

to correspond to the recovery rate of the local wavefront after a vortex has moved

through it, while the lower frequency corresponds to the full cycle of vortex nucleation,

motion and annihilation. At bd = -2.55, the motion is similar to that just described

but with deeper modulation (fig. 6.8c, which is plotted with a different time scale).

At bd = -2.75 (fig. 6.8d), the transverse modulation is irregular, possibly due to

the occurrence of a third incommensurate frequency. In 2-D, in contrast with the

previous case where the vortices' trajectories were confined to a fairly well defined

area, they now seem to visit the whole beam cross-section irregularly. At bd = -3.18

(fig. 6.8e) the motion is periodic again. The transverse modulation has a period of

_-, 23 grating time constants, which is 13 times the period of ,-_ 9/5 time constant of

the fast oscillations measured in fig. 6.8a.

The remainder of this section gives a more detailed illustration of the relationship

between the vortices' trajectories and the spatiotemporal coherence of the beam.

The dynamics of the fluctuating beam can be characterized by a correlation index

distribution calculated from the spatial correlation function defined in eq. 5.4.

To illustrate the usefulness of this concept, the correlation index distribution with
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respect to the origin, C(O,O;z,y), was calculated for the five off-Bragg parameter

values used in the previous examples. The spatial correlation diagram thus obtained

can then be compared with the vortices' trajectories. For this, the positions of the

vortices were calculated at regular intervals of time by solving for ReA4(x,y,t ) =

ImA4(z, y, t) =0, and they are represented by dots on a 2-D plot. Note in passing

that, with the particular choice of modes adopted for the expansion of A4, these

positions could be solved for algebraically.

Figure 6.9 shows the correlation index distribution for a small value of the off-

Bragg parameter (bd = -2.3). No vortices appear in the field but the amplitude

and phase of the wavefront oscillate periodically as if waves were travelling along an

annular area centered on the beam.

At bd = -2.45, the motion is characterized by the nucleation of two pairs of

defects at two diagonal ends. The vortices move along circular trajectories and the

members with opposite charges from each different pair collide and annihilate near

the two diagonal ends on the other side. This motion is then repeated periodically

with alternating directions. A sequence of interferogram snapshots illustrating this

motion is shown in fig. 6.10. A plot showing the distribution of vortice's positions in

time is shown in fig. 6.11a. The vortices' trajectories are clearly confined to a narrow

annular area in the beam. Figure 6.11b shows the corresponding correlation index

distribution. Its particular shape can be explained by the fact that the intensity fluc-

tuations at some location in the beam are due to the passage of a vortex nearby, that

no vortex ever appears near the origin (the fixed point for calculating C) and that the

vortices' trajectories are confined to a narrow annular region of space. It is only near

this region that the correlation index is expected to drop sharply. The correlation in-

dex distribution was also calculated with a fixed point chosen at a location frequently

visited by a vortex. The relationship between the distributions of fig. 6.11a and b

is analogous to that between a photographic print and its negative. The correlation

index is high in the annular area visited by the vortices and low everywhere else. This

confirms that the four vortices appearing in the pattern are highly correlated, as is

expected since they nucleate simultaneously and produce intensity fluctuations near
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Figure 6.9: Correlation index distribution calculated with respect to the center point

shows that the spatial coherence remains high in most parts of the wavefront except

near an annular area where phase instability is found to occur.
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Figure 6.10: Sequence of interferogram snapshots revealing the motions of two pairs

of defects in the beam cross-section for the off-Bragg parameter bd = -2.45. The

two pairs of defects of opposite charge move along circular trajectories, collide and

then annihilate near the two diagonal ends. The rotating motions of the defects are
alternate in handedness.
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Figure 6.11: (a) Trajectories of defects in the wavefront for the off-Bragg parameter

bd = -2.45, localized on an annular ring. (b) The correlation index with respect to

a point at beam center drops sharply near the defects' trajectories.
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their trajectories which are only delayed in time. A qualitatively similar behavior of

the vortices was observed for bd = -2.55, as illustrated in fig. 6.12a and b.

An apparently chaotic time series was observed for bd = -2.75. Figure 6.13a shows

that the vortices' position distribution is diffuse, indicating that their trajectories do

not remain confined to narrow regions of space. In fact, the defects can visit about any

place in the beam except near the origin and this is only because of the peculiar set of

modes chosen for the decomposition. The corresponding correlation index distribution

shown in fig. 6.13b is low in all regions visited by the vortices. Figure 6.13c shows the

correlation index distribution with a fixed point (xl,yl) = (1, 0.3) frequently visited

by a vortex. It shows that even though the vortices trajectories have become more

random, the intensity fluctuations in the regions they visit remain highly correlated.

At bd = -3.18, an apparent frequency locking was observed in the local intensity

time series, leading to a quieter dynamics. For this value of the off-Bragg parameter,

the wavefront phase and amplitude oscillate periodically but no defect nucleates. The

regions in space where these fluctuations occur are identified as two concentric rings

in the interferogram snapshots of fig. 6.14 and in the corresponding correlation index

distribution of fig. 6.15.

6.4 Experimental results

The experimental apparatus has been described in detail in section 5.1. The

PCM is an externally pumped single crystal of BaTiOa. The source for the pumps

is a single mode Ar ion laser ()_ = 514nm) optically isolated from the setup by a

Faraday rotator. The cavity ends with a planar dielectric mirror (R=0.95%) and

contains a 16cm focal length lens. Two intra-cavity circular apertures of diameter

dpcm = 0.79mm and dm =0.38mm give a Fresnel number F = 3.7. The off-Bragg

parameter was varied by tilting the mirror directing the pump A1 toward the PCM

and its values were calculated as the product of the momentum mismatch along the

cavity axis with the interaction length. The change in pump overlap due to the tilting

was measured and found negligible.
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Figure 6.12: (a) Defect trajectories for bd = -2.55 showing defects still confined

to certain regions of space but with more paths appearing. (b) The corresponding

correlation index distribution shows the sharp drops of the spatial coherence in the

area of the paths of defects.
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Figure 6.13: (a) At bd = -2.75, the defect trajectories become more diffuse and

occupy larger regions of space in the wavefront. (b) The correlation index distribution

with respect to the center point drops to small values at places where the defects

concentrate. (c) The correlation index distribution with respect to a point (1,0.5)
shows a high spatial coherence in all areas visited by the defects.
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Figure 6.14: Sequence of snapshots of interferograms showing the time evolution of
structures in the beam cross-section at bd = -3.18. It shows fringes bending with no

defect nucleation. The phase breathes periodically in two concentric annular areas.
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Figure 6.15: The correlation index distribution with respect to the center point show

a structure with two concentric rings. The regions of low values of the correlation

index are the places where fringe bendings are observed.
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The aim of the experiments is to show, by way of illustration, that the range of

behaviors predicted by the model and described in section 6.3 is indeed observed in

the physical system. It would be unrealistic to expect a quantitative match between

the experimental data and the results of numerical simulations if only because it is

not possible to control experimentally which modes are actually taking part in the

dynamics. A qualitative match, however, would at least indicate that the truncated

modal expansion approach gives a fair representation of the actual dynamics of the

PCR.

Figure 6.16 shows an interferogram snapshot of the beam exiting the PCM. It

exhibits four vortices located at the corners of a quadrangle in an arrangement similar

to that predicted by the model in figs. 6.6 and 6.10.

The off-Bragg parameter was scanned between two extreme values at which the

momentum mismatch is large enough to reduce the gain below cavity losses and pre-

vent oscillation. Local time series were recorded within that range and analyzed using

power spectra and delayed-time phase space portraits. Near the center of the cov-

ered range of parameter values, a region where the motion was clearly periodic could

be identified. On both sides of this region, similar sequences of various dynamical

behaviors were observed, up to large mismatches at which the cavity stops oscillat-

ing. Before reaching these limits, simple periodic oscillations at reduced amplitudes

were again observed. The sequence of behaviors just described is exactly what the

bifurcation diagram of fig. 6.3 would predict (note that within the approximations of

the model, this bifurcation diagram is symmetrical around bd = 0, but in the actual

setup this symmetry is broken). By analogy with the model, the origin of parameter

space (bdr = 0) was chosen as the midpoint of the central region showing periodic

oscillations. Other values of the off-Bragg parameter mentioned below are relative to

this point. Some examples of time series are shown in fig. 6.17 and the corresponding

power spectra are displayed in fig. 6.18. These examples were chosen to illustrate the

variety of dynamical behaviors exhibited by the PCR and to compare them with the

characteristic behaviors predicted by the model.

Figures 6.17a, 6.18a show the periodic motion expected for the off-Bragg parameter

170



CHAPTER 6. A MODEL OF SPATIOTEMPORAL DYNAMICS IN PCRS

Figure 6.16: Interferogram snapshot at the output of the PCM revealing the presence

of two pairs of vortices of opposite charges (experimental result).
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Figure 6.17: Local time series of/4 measured at a point in the beam cross-section

showing the variation of the dynamics for different values of the off-Bragg parameter:

(a) simple periodic motion, (b) irregular motion, (c) frequency locking, (d) quasiperi-

odic motion, (e) another quasiperiodic motion.
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Figure 6.18: Power spectra of the local time series of fig. 6.17 showing (a) a funda-

mental frequency for a simple periodic motion, (b) three frequencies and a continuum

for an irregular motion, (c) a frequency and it subharmonics for the frequency locked

motion, (d) two incommensurate frequencies for a quasiperiodic motion, (e) another

quasiperiodic motion with at least two incommensurate frequencies in the spectrum.
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bd = 0. The corresponding delayed-time phase space portrait (fig. 6.19a) shows

broadening which may give an indication of the level of stochastic noise.

Figures 6.17b, 6.18b obtained with bdT = 0.65 show a chaotic state with an ir-

regular time series and a spectrum containing at least two or three incommensurate

frequencies, including the main frequency of about 0.14Hz, and a broad continuum,

a signature of chaos. The exponential decay of the power spectrum (linear on the

semilog scale of fig. 6.18) may be indicative of deterministic chaos. The corresponding

phase space portrait of fig. 6.19b is diffuse and essentially featureless.

Figures 6.17c, 6.18c give a typical example of frequency locking obtained at bdT =

1.29. The locking at period three is confirmed by the closed-loop phase space trajec-

tory shown in fig. 6.19c. Note that the width of this limit cycle is about the same as

that of fig. 6.19a and is probably due to stochastic noise.

At bd_ = 1.94 (figs. 6.17d, 6.18d) the motion is quasiperiodic with a spectrum

containing only two incommensurate frequencies and their linear combinations. An-

other quasiperiodic motion obtained at bdr = 2.16 is shown in fig. 6.17e, 6.18e. Here

the lower frequency appears as sidebands of the higher one. For larger values of the

off-Bragg parameter, e.g. bdr > 2.37, the motion is periodic again with the same

dominant frequency of _ 0.14Hz but with decreasing amplitude. When bd_ > 3, the

gain is lower than the cavity losses and no oscillation occurs.

6.5 Summary and conclusions

A model based on a truncated modal expansion of the cavity modes has been

tested to describe the spatiotemporal dynamics of a phase-conjugate resonator. The

Gauss-Hermite modes of the empty cavity are chosen as sensible basis functions to

represent the fields in the nonlinear medium. Although the choice of the modes

which take part in the dynamics is arbitrary in this method, justifications are given

for truncating the series at a mode index of the order of the cavity Fresnel num-

ber. Verification of the validity of this choice are later given by comparison with
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Figure 6.19: Time delayed phase-space portraits obtained from the data of the time

series in fig. 6.17 showing (a) a limit cycle, (b) an irregular distribution, (c) a cycle-
three motion, (d) smeared trajectories for the quasiperiodic motion.
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experimental data. Numerical examples, using the off-Bragg parameter (momentum

mismatch) as a control parameter, reveal a rich variety of dynamical behaviors illus-

trated by the local intensity fluctuations and ranging from simple periodic oscillations

to quasiperiodic motions and chaotic states.

The modal decomposition method is particularly well suited to studying the spa-

tial aspect of the dynamics without requiring prohibitive computational budgets.

Numerical results indicate that the spatiotemporal dynamics of the PCR is mediated

by the nucleation of pairs of defects of opposite charges in the beam and by their sub-

sequent motion and annihilation. Maps of the spatial coherence function of the beam

are found to be templates of the corresponding maps of the vortices' trajectories,

establishing a strong correlation between these two quantities. The loss of temporal

coherence and the onset of temporal chaos in the local intensity fluctuations is like-

wise correlated to the loss of spatial confinement of the vortices' trajectories and to

the loss of spatial coherence.

Experimental data obtained with a PCR, using an externally pumped BaTiO3

photorefractive PCR, reveal a range of dynamical behaviors similar to those shown

by the simulation. These results confirm and complete the findings of the earlier

experimental study of the PCR's dynamics at various Fresnel number, given in chapter

5. The arbitrariness of choice of the modes to include in the dynamics is the main

shortcoming of the truncated modal expansion approach. Nevertheless it appears to

be a convenient and computationally nondemanding tool to use to study and predict

qualitatively the spatiotemporal behavior of phase-conjugate resonators and perhaps

of other nonlinear optical devices as well.
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Conclusion

7.1 Discussion and summary

The material presented in this thesis is the result of an inquiry about the possible

use of a phase conjugate resonator (PCR) as an image storage as well as a processing

element in structural control (e.g. for the real time monitoring of the deformation

of large structures). The dynamics of the PCR has been studied in two distinct

regimes. Below threshold (gain < loss), the PCR cannot self-oscillate. In this regime,

the output beam is always stationary in space and time, after the transients have died

out. This stability makes it possible to use the PCRs in image processing applications.

When the gain threshold is exceeded (above threshold), the PCR self-oscillates and

spatiotemporal instabilities in the output beam set in.

This thesis was thus organized in two parts. In the first part, we have investigated

the transient behavior and stability properties of a PCR below threshold. In the sec-

ond part, we have studied experimentally and theoretically the PCR's spatiotemporal

dynamics above threshold.

We have presented the transient dynamics of a PCR below threshold based on

time-dependent coupled wave equations for FWM in a photorefractive crystal with

two distinct interaction regions caused by the feedback from a slightly tilted ordi-
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nary mirror. First, we have solved the steady state equations for the cavity's fields

analytically, assuming nondepleted pumps and an absorption free medium. The so-

lutions predict that the PCR self-oscillates (reaches threshold) in a broader range

of values of pump ratios if the PCM has a higher values of the coupling parameter.

The PCR's transfer function (below threshold) is obtained through applying a sim-

ple frequency-domain transformation technique to the steady state equations. The

transfer function is shown to be largely dependent on the coupling parameter and the

pump ratio. Contour plots of the transfer function as a function of complex angular

frequency indicate that there is no sign of instability before the PCR can self-oscillate,

while unstable poles quickly develop once the PCR is above threshold.

In the transient regime of the PCR, we have successfully applied a numerical

scheme for integrating the photorefractive FWM equations separately in the space

and the time domains using the adiabatic elimination process. Numerical calculations

of the cavity's buildup and decay times as well as of the specularly reflected and

phase conjugate reflected intensities as functions of a number of system parameters

confirm that the parameters affecting the threshold most directly are the coupling

parameter and the pump ratio. We have presented results which indicate that the

cavity buildup and decay times can be tailored by varying several system parameters.

Results predict the possible use of the PCR as an image processing element. For

example, the PCR could, in principle, perform constrast enhancement during buildup

and contrast reduction during decay. This same feature could be used to implement a

time varying spatial filtering if the projected field in the PCM is the spatial spectrum

of an image rather than the input image itself. Experimental measurements of the

cavity's buildup and decay times confirm qualitatively the result of the numerical

simulations.

In the above-threshold regime, we have studied experimentally some aspects of the

spatiotemporal behaviors of the PCR as a function of the Bragg detuning bd achieved

by misaligning one of the two pump beams, and as a function of the degree of trans-

verse confinement controlled by varying the resonator's Fresnel number F. Temporal

aspects of the beams' complexity were revealed by analysing the local intensity time
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series, power spectra, and embedded phase space portraits. In the case of varying F,

we observed bifurcation phenomena typical of low dimensional dynamical systems, i.e.

in order of increasing control parameter, a bifurcation from a stationary to a periodic

state, followed by more subharmonic bifurcations, the occurrence of a chaotic state,

the occurrence of intermittency, and finally a fully turbulent state. For a particular

case of irregular oscillations, the correlation dimension of the attractor constructed

from the embedded phase space was calculated to be approximately 5.2, indicating

that the attractor may be strange. Furthermore, a positive finite lower bound value

of the Kolmogorov entropy can be extracted from the same time series, indicating the

existence of a deterministic chaos. In the case of varying bd, the temporal aspects of

the dynamics in the local time series range from simple periodic oscillations, followed

by quasiperiodic states interrupted by chaotic states. All experimental results thus

far have consistently revealed the presence of two distinct frequencies in the power

spectra in some regions of parameter space.

Regarding the spatial aspects of the beams' complexity, we have demonstrated the

existence of wavefront dislocations or vortices in the optical fields by video recording

and by interferometry. A rich variety of defect movements has been recorded and

analysed. The spatial complexity was characterized by the number of optical vortices

and their variety of movements, as well as by their relationship with the beam's

spatial coherence. The number of defects and the spatial correlation index have been

shown to follow similar trends as the transverse confinement of the system is relaxed,

pointing to the role played by the wavefront dislocations in the dynamics.

We have also tested a model based on a truncated modal expansion of the cavity

modes, to investigate the spatiotemporal dynamics of the PCR. We have clearly shown

that the optical vortices in the wavefront are also present in the numerical solutions.

Simulations using the Bragg detuning as a control parameter have shown that optical

vortices begin to appear under conditions of increased local gain which appears to be

obtained by the small misalignment of one of the pump beams from the Bragg angle.

Power spectra of simulated time series also contain two distinctive frequencies for a

certain range of the off-Bragg parameter, indicating that the dynamics is governed
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by two different time scales. The short one, on the order of the material's damping

time, seems to correspond to the recovery rate of the local wavefront after a vortex

has moved through it, while the long one is associated with the alternation from one

mode to another in the competition process and seems to correspond to the full cycle

of the vortices' nucleation, motion and annihilation. Numerical results also indicate

that the loss of temporal coherence and the onset of temporal chaos in the local

intensity fluctuations is likewise correlated to the loss of spatial confinement of the

vortices' trajectories and the spatial coherence.

Thus far, several reports have been published in the literature concerning tem-

poral instabilities in photorefractive oscillators. Each of these systems has provided

a physical picture of how chaotic oscillations can occur. Our study shows that the

spatiotemporal chaotic behaviors in a PCR may possibly be attributed to the mech-

anisms of the competition among various cavity modes and the gain enhancement

which arises from off-Bragg FWM. As we have seen in chapter 2, the steady state

solution predicts that the range of pump ratios Rp, within which the feedback param-

eter _ can be greater than one, becomes wider and wider as the coupling parameter

%d is increased. The direct numerical integration of the FWM equations in chapter 3

confirms that the PCR can fall into the above-threshold regime in a wider range of

pump ratios with increasing values of the coupling parameter. In chapter 6, we pre-

sented the three dimensional FWM equations in order to account for the transverse

dynamics in the PCR. We introduced a modal decomposition method in which cav-

ity fields are basically described by a set of participating cavity modes. Numerical

results show that chaotic oscillations set in for a large enough coupling parameter

(e.g. I%dl > 8). In the modal decomposition method, we have seen how the modal

amplitudes of the cavity fields are coupled to each other in eqs. 6.20-6.23. It is this

complex coupling that brings about the unstable oscillations which would otherwise

not be seen in the plane-wave FWM model even in cases of quite large coupling pa-

rameters. The off-Bragg parameter bd obtained by tilting one of the two pumps away

from the Bragg angle is another significant factor in lowering the threshold for the

instabilities observed in PCR. When bd = 0 (no Bragg detuning), only periodic os-
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cillations are seen in the output. When bd _ 0 (with Bragg detuning), quasiperiodic

and irregular oscillations appear in the output.

With no Bragg detuning, the coupling between cavity modes provides only chan-

nels for energy exchange between modes. This "beating" between oscillating modes

leads to periodic changes in the output beam. With Bragg detuning, there is an

additional phase transfer between the interacting modes due to the additional phase

shifts of the individual mode gratings. It is this coupling of the phases which makes

possible the occurrence of chaotic behavior. An intuitive explanation for this behavior

is the following. Consider what happens inside the crystal as the FWM process pro-

gresses in time. Initially pump 2 illuminates the crystal and at time t = 0 pump 1 is

turned on and scattered noise in the cavity forms beam 4. Then, beam 1 and beam 4

start to write various mode gratings and beam 2 is scattered from these gratings and

the scattered beam is fed back from the dielectric mirror. However, as the gratings

start to form, they change the phase of the individual mode. This in turn causes a

new mode grating to be written, which again changes the phases of the participating

modes, and so on. This constant change in phases of the interacting beams leads to

constantly writing new gratings and washing out old gratings. It is these dynamic

gratings together with the feedback of the cavity that gives rise to chaotic oscillations

once some gain threshold is exceeded.

A final remark should be given. The arbitrariness of choice of the participating

modes is the main shortcoming of the truncated modal expansion approach used in

this work, despite the fact that justifications are given for truncating the series at a

mode index of the order of the cavity Fresnel number. Yet, the method is shown to

be a particularly convenient and computationally nondemanding tool for study of the

spatiotemporal behavior of the PCR and perhaps of other nonlinear systems as well.

Thus far, experimental results are supportive of the validity of this approach.

In conclusion, this the first time to the author's best knowledge that the spa-

tiotemporal dynamics has been both experimentally and theoretically explored in a

photorefractive PCR, and also that direct physical evidence of optical vortices has

been unveiled in detail in the wavefronts of the optical fields from the PCR. Our re-
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sults should prove useful in the study of photorefractive devices and in the assessment

of their practical usefulness. They may also add a small contribution to the growing

area of research in nonlinear dynamics in general.

7.2 Possible future investigations

One of the interesting properties of a PCR is that a great number of transverse

modes is allowed to oscillate if the transverse extent of the cavity is opened up. This

means that an optical processing device utilizing a PCR can have a high spatial

resolution. Yet, the spatiotemporal instabilities due to the transverse mode com-

petition reported in this thesis may impose limitations on the spatial and temporal

performance of the device. To make a device pratical, methods for eliminating these

instabilities are definitely needed. Some efforts have been recently made to alleviate

the spatial and temporal instabilities in a PCR with BaTiOa as the PCM, by using

an intracavity mode homogenizer such as a multimode fiber taper or light pipe [107].

The demonstrated improvement in the spatial and temporal stability, and also the

overall increase in the transverse extent of the oscillating mode, will undoubtedly

make possible many new processing techniques based on PCR in the above threshold

regime.

The mode competition process in the PCM may be favorable for other applica-

tions. For example, associative recall and processing of images using photorefractive

oscillators have already been demonstrated [9, 10, 11]. In these applications, compe-

tition between modes is fundamental for the discrimination capability of the memory.

A recent investigation to explore the possibility of using a laser as a nonlinear ele-

ment in an associative memory architecture [108] may be an important new approach

utilizing the continuous field distributions in a cavity rather than a discrete array of

elements as in many neural networks. One basic requirement for this approach to

be successful is the coexistence of many stable states, or "spatial multistability". In

isolated multistable systems the final state is completely unpredictable because ini-

tial fluctuations determine its evolution. Yet, different behavior is expected when the
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system is driven externally by an identical system. In this case, a weak signal from

the driving system is injected into the system while it is below threshold. As soon

as the injected signal is switched off, the main system is switched above threshold.

The system then starts with the seed left by the signal, and the evolution toward a

stationary state is no longer random but is a function of the spatial configuration of

the initial seed. Still, more demonstrations of practical architectures of such kinds are

definitely needed. It seems that a PCR with high mode volume may be a candidate

for the nonlinear element of an optical associative memory. Nevertheless, the first

question to answer is whether spatial multistability can be achieved in systems based

on photorefractive oscillators. To this end, the PCR patterns must be stabilized and

simultaneously some process must be found to switch from pattern to pattern. Per-

haps the example of using an intracavity mode homogenizer in PCR is a first step

toward achieving these goals.

Another aspect of the spatiotemporal dynamics concerns the behaviors of the cav-

ity fields in other PCR geometries. The similarities and differences obtained with

different setups may be important. At least, with such a comparison we could have

some ideas of what is generic or geometric-specific in the observed dynamics. Fur-

thermore, other new methods for the study of extended systems such as subspace

Lyapunov spectra. [84] could also be applied to the diagnosis of experimental data

from the PCR.
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Derivation of the four-wave

mixing equations

In this appendix we derive the set of coupled wave equations for waves propagating

in the PCM that are used in studying the dynamics of the PCR. At first we consider

the optical fields as uniform plane waves of infinite extent, then we allow the optical

fields to have transverse spatial variations.

We start with the Maxwell's equations for the macroscopic variables of the fields.

In general these equations take the form:

V×$- _O_ (A.I)
cot'

47r --_
Vx_- I0/5 + __j,

c Ot c

V. :D = 47rpf,

V./_= 0,

(A.2)

(A.3)

(A.4)

with

_ =/3- 4rA,_,

(A.5)

(A.6)
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,f : aS, (A.7)

where $ is the total optical electric field, _ is the electric displacement, 75 is the

induced polarization, _ is the magnetic field,/_ is the magnetic induction, ./Q is the

magnetization, p/ is the free charge density, j is the current density, c is the speed

of light in vacuum, ¢o is the permittivity in vacuum, ero is the background (average)

relative dielectric constant when only the pump beams are present, Aer is the relative

induced dielectric constant which is slowly varying in both time and space when both

the pump beams and the probe beams are present, and o" is the conductivity.

For ferroelectric oxides, _ = /_ and p/ = 0. Taking the curl of eq. A.1 and

combining with eq. A.2, we obtain the wave equation:

4rre o%v

c2 Ot '

O_g Ae 02_
V2f-d bt f- c 2 Ot 2 + (A.8)

where e = eoero and Ae(r, t) = eoAer. It is assumed that Ae(r, t) is smooth in space

and time. Suppose that the fields inside the PCM are uniform plane waves of the

same polarization, say the extraordinary polarization (see figure A.1). We also assume

that all waves are propagating with small angles to the z-axis and the total intensity

profile as well as the resultant refractive index vary periodically in x with frequency

kx. Thus, we can write down the scalar total optical field in fourier expansion as

oo

g(x,z,t)= y_ A,(z,t)ei(_°':_kzz+'k*_), (A.9)
l_--O0

and the induced dielectric constant as

oo

Ae(x,z,t)= _ q(z,t)e _lk==, (A.10)
l_--O0

with k_ = koV/-esinO, kz = kox/TcosO, ko = 2rc/to = w/c, where to is the light

wavelength in vacuum.

In the following, we use the slowly varying envelope approximation (SVEA) which

assumes that A_(z, t) and el(z, t) are smooth functions of z and t, i.e.

02 A_ OAl 02At O__zZOt---g-<< 2co 0---7- and Oz---Y <<72k_ . (A.11)
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-. 0
QQ_Q

PCM

A2

'V,

"" A 3

Figure A.I: Schematic diagram for the four-wave mixing geometry. A1 and A2 are

the two external pumps. A4 is the probe beam and Aa is the phase conjugate beam.

Arrows show the beams' polarization and direction of propagation. Beams are sym-

metrical about Z and 0 is the angle inside the crystal, fi denotes the crystal's axis.
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Substituting eq. A.9 and A.10 with A.11 in A.8 and equating the/th component of

the optical field on both sides, we obtain

OA, we OAt i(1 -/2)k2 27cw_ . iko2

+ c_-kz 0-t + 2-k_ A, + _At = T_- l_' e,,A,-e.
(A.12)

In four-wave mixing, without Bragg missmatch, beam 1 is collinear with beam 2 and

beam 4 is collinear with beam 3 (see figure A.1), we have

= = 0 (A.13)

The total optical field as a sum of four beams takes the form

4

g(x,z,t) = _ Aj(z,t)e '(_t-_3.5 (A.14)
j=l

Next, for the Bragg's condition in a thick volume hologram situation, i.e. At = 0 for

ill > 1 and A+I -fl 0, eq. A.12 becomes

OA+I wc OA+I ik2o a (A.15)
0---7 + C2kz Ot 2kz c+2A:_l - cos----0A+I'

for waves propagating to the right, and

OA+I

OZ

we OA+I ik2o

- + co-i?A±" (A.16)

for waves propagating to the left, where oL = 27c_/Cv_. Thus we can write down the

coupled differential equations for waves propagating inside the PCM in the notation

of figure A.1 as follows:

OA1 1 OA1 -iko c_ (A.17)
0_- q- vcos00t - 2v/eCOS0 e2A4 cos0 AI'

OA2 1 OA2 iko

Oz vcos00t - 2x/_cosOe-2A3 + ----d A2'cos (A.18)

OA3 1 OA3 iko a

Oz vcos00t - 2v/_cos0e2A2 + c--_s0A3, (A.19)

OA4 1 OA4 _ -iko c_

O----_+vcosO Ot 2_-s0 c-2A1 cos 0A4' (A.20)
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with v = Civic. From eq. A.14, the total intensity is

I(x,z,t) = [El 2

A A._-i(g2-g3)._"
= Io(z,t) + (m,A_e -'(_'-_')'¢ + _2_3_

+A1A_e-i(fcl-g3)e+ A_A4e -i{;_-_2)'e) + c.c.

(A.21)

with Io(z,t) 4 iAj(z,t)12.= _j=l Because of the small incident angle to the z-axis for

all fields, the exponentials in the 4th and 5th terms are fast changing phase factors

with respect to the slowly varying amplitudes so that they becomes insignificant in

space averaging. Now we let/_1 - k4 = f¢2 - k3 =/(_ with II(_1 _,, 2kx. Then the light

intensity can be written as

I(x,z,t) = Io(z,t) + [I2(z,t)e -ig*': + c.c.], (A.22)

with

h(z,t) = A_(z,t)A*4(z,t) + A_(z,t)A3(z,t). (A.23)

The induced dielectric constant is related to a space-charge field via the linear

electro-optic effect (see Appendix B) and is given by

1 -3
A_( x, z, t ) = -_V/-_nor_l l E_( x, z, t ), (A.24)

where rio is the bulk refractive index, r_/f is the electrooptic coefficient, and E_ is

the space-charge field determined by the transport equations B.1-B.4. Also we can

expand the space-charge field in the same form as Ae in eq. A.10:

E_ = Eo + [E2(z,t)e -'K'_ + c.c.] . (A.25)

Thus, comparing eq. A.25 with A.10 and equating the coefficients of e -_K_ on both

sides of eq. A.24, we have

6+2(z,t) = V/_3r E tz t' (A.26)
-_- o eli 2k , )_

and

(A.27)
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Taking 0 << 1, and using eqs. A.17-A.20 with eqs. A.26 and A.27, we obtain a set

of coupled wave equations having the form:

OA1 10A1

0-----_+ - QA4 - aA1, (A.28)v Ot

with the index grating

OA_ 1 OA_
Oz v Ot - QA; + o_A_, (A.29)

OA3 10A3

Oz v Ot - QA2 + o_A3, (A.30)

OA"4 I OA*4
O---Z+ -QA_-aA_, (A.31)v Ot

where E_ is given in eq. B.32.

Q - iwfi 3
4c reyyE2' (A.32)

Next, we consider the possible transverse spatial variations of the optical fields.

It means that the fields' amplitudes depend in general on z and Y as well as z, i.e.,

4

£(z,y,z,t) = y_ Aj(z,y,z,t)ei("-k','_ + c.c. (A.33)
j=l

The wave equation A.8 can be written as

V2S(x,y,z,t)_ n2(x,y,z,t) 02$ 4zcaO£
c 2 Ot 2 c 2 Ot - O, (A.34)

where n 2 = e + Ae. Also when considering weak modulation in a photorefractive

medium, we can expand n in the same form as the induced dielectric constant:

n(x,y,z,t) = + + c.c.

= fi+An(x,y,z,t),

(A.35)

where rn(x, y, z, t) is the first order perturbation which is given by the ratio

Is(x, y, z, t)

rn(z,y,z,t) =_ Io(z,y,z,t) (A.36)

A1A_ + A_A3

Io
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and fi is the bulk refractive index, An is the induced refractive index. Here /(_ =-

f_4- /_1 = /_2- k3. We assume a small modulation in the refractive index, i.e.,

JAn I << ft. Then the wave equation A.34 can be reduced to

v E(x,y,z,t) - -j + c2 ] or2 ot - o. (A.37)

Substituting eqs. A.33 and A.35 in eq. A.37 and using the SVEA, we obtain

,=1

c2 -_ + iw A,}e -'k''e + c.c. = 0, (A.38)

where 02 02
V_ -= -- + -- (A.39)

Ox 2 Oy _

is the transverse Laplacian operator. Equating the coefficients of e-';_'e separately, we

obtain the following set of equations for waves propagating inside the PCM including

the transverse spatial variations in the fields' amplitudes:

2k + _' " V + a + -_ A1 = -QA4, (A.40)

_ 2___-_-+_:2.V+a+_-_ A;=QA;, (A.41)

2k + t:3" V + a + _ Aa = -QA2, (A.42)

- 2---£-+ ]%. V + a + -_ A*4 = QA_ (A.43)

where we have ignored the products of two small quantities viz nlOAi/Ot as well as

the terms (1/w)OAi/Ot; a = 2_ra/cx/'-_ and v = c/v/_. The grating Q is given by

Q(x,y,z,t) - %m(x,y,z,t), (A.44)

where the coupling coefficient 70 is

- iwnle_¢ (A.45)
70 - 2c

The expressions for the amplitude nl and the phase ¢ of the refractive index modu-

lation are given in eqs. B.55 and B.56 of Appendix B.
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The Kukhtarev equations

In this appendix we use Kukhtarev band transport model [42] to derive the ba-

sic equations governing the hologram formation process in photorefractive media. In

Kukhtarev model, the photorefractive materials are assumed to contain donor and

acceptor traps which arise from the crystals' impurities. These traps introduce inter-

mediate electronic energy states in the bandgap of the insulators. When photons of

sufficient energy are present, electronic transitions by photoexcitation take place. As

a result of the transitions, charge carriers are excited into the conduction band and

the ionized donors become empty trap sites. Furthermore, movements of the charge

carriers are generally described by diffusion, drift and the photovoltaic effect [16].

The migration of the charge carriers from bright regions where they are photoexcited

to dark regions where they are recombined with acceptors builds up a space-charge

field inside the crystal. The space-charge field modulates the material's refractive

index via the linear electrooptic effect [40] (Pockel effect).

The space-charge field created by the migration and trapping of the charge carriers

is determined by the following set of transport equations:

On _ ON + 1V. 5' (continuity) (B.1)
Ot Ot q

Ot - (SI +/3)(ND -- N +) -_/RnN + (rate equation), (B.2)
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-f = q#nE, - kBT#Vn + pI_c (current equation), (B.3)

V./_ = q (n + NA - N +) (Poisson's law), (B.4)

where (SI +/3)(ND--N +) is the rate of charge carrier generation, 7RnN+D is the rate of

trap capture. Here S is the cross-section of photoionization,/3 is the rate of thermal

generation, "_R is the carrier-ionized trap recombination rate coefficient and n and

N + are the concentrations of the carriers and ionized traps, ND is the concentration

of the donor traps, I is the light intensity, NA is the acceptor concentration, # is

the mobility, T is the temperature, kB is the Boltzman constant, e is the dielectric

constant, pI is the photovoltaic current and p is the photovoltaic constant, _c is the

unit vector along the c axis of the crystal, /_ is the total field which includes the

induced space-charge field /_ and any external or internal fields such as internal

ferroelectric fields; and q is the charge of the charge carrier.

In general # and e are tensors and ND and NA could vary with position. For

simplicity we will assume that # and e are scalars and No and NA are constant

throughout the material. Eqs. B.I-B.4 are nonlinearly coupled and generally difficult

to solve without some approximations. In the following we will simplify the band

transport equations using various approximations to solve for the space-charge field

and obtain the basic equation that governs it.

We begin with a perturbation scheme to linearize the above coupled equations.

To this end, we let (see figure B.1)

I(x,z,t) = Io(z,t) + [h(z,t)e -ig'_ + c.c.] (B.5)

E(x,z,t) = Eo(z,t) + [E_(z,t)e -'K,': + c.c.] , (B.6)

= no(Z,t)+ [n (z,t)S + cc], (BT)

= N o(z,t) + + c.c.], (BS)

j(x,z,t) = jo(z,t) + [j2(z,t)e -iKx': + c.c.] . (B.9)

Here E(x, z, t) is the overall electric field in the photorefractive material, which is the

sum of any external field Eo and the induced space-charge field E2, and we assume
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""',A3
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Z

Maximum of the light intensity

Maximum of the grating

Figure B.I: Hologram formation in a photorefractive material using the four-wave
mixing scheme
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that I2(z, t) varies relatively slowly along the z-axis as compared to the fast change

of e -at'_x along the x-axis, etc. (SVEA).

At first we consider the quasi-steady static case, i.e. Ono/Ot _ ON+o/Ot _ O. We

also assume that there are a lot of available donors and acceptors to linearize the

generation and recombination rates, i,e., ND >> ND -- N + and NA >> n. From now

on, we also ignore the small thermal factor, i.e. _ << SI. Then, from eq. B.4 and

assuming the SVEA, we have

OEsc _ q-(n + NA- N+). (B.10)
C_X -- (.

We obtain the following equations upon equating the zeroth order terms and the

coefficients of e-iK_z:

lX x£

N+o = NA + no _ NA, (B.11)

(B.12)

Consider a maximum space-charge field with charge separation comparable to the

grating period such that

K::E;- qNn (B.13)
£

Then, in eq. B.12
i<

E: = _--;(n_- N_+_). (B.14)

Now, from eq. B.2, we have

ON+2 -iKxx Jr- C.C.]
S [Io + I2e -iK_ + c.c.] ND (B.15)

" " hf+ _-iKxx C.C.] ,+ + + +

which gives us

and

S IoND ,,_ _SI°ND (B.16)
no 7RN+ ° "/RNA

- SI2ND -%[n2N+o + noN_2]. (B.17)
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For the quasi-steady state, or when the generation rate equals the recombination rate,

i.e. ON+2/Ot _ O, we have

N+ _ _ SI2ND
"/nno

Combinding eqs. B.1 and B.3, we get

Ot + c.c.

NA

n o

n2. (B.18)

r+ 1D_2e-iK_z + c.c.
t

--_ [no + n2e -iK,x + c.c.] [(-iI(x)E2e -iK*x + c.c.J

-# (-iI(x)n2e -iJ'_ + c.c.] [Eo + E2e -it<'_ + c.c.]

kBT# c.c.]+_ [(-iI(x)_-iK_ x +
q

P [(-iK.)I2e -i_'=_ + c.c.] .
q

(B.19)

As On2/Ot - ON+2/Ot ,,_ 0, we get

(ikBTI(_) [ pIo (I_)]Eo + n2 = -- E2 + -- no. (B.20)
q q#no

We recognize the diffusion field ED =-- kBTK_/q and the photovoltaic field Ep _=

pIo/q#no. Then we rewrite n2 as

E2 + Ep I2 / Io

n2 = Eo + iED no. (B.21)

Now, substituting eqs. B.18 and B.21 in eq. B.14, we have the following static space-

charge field:

E#:-iE;(NA+n°)[E +EpI /I°v)V-; t  ;4/-27 +TooI2] (B.22)
Since

(NA + _o) qNA q(ND- NA) qN_E; No . " eI(-----__ eI'(_ND NA =-- eI(_ -- Eq, (B.23)

where N_ is the effective trap density, we can simplify eq. B.22 such that the modu-

lation of the static space-charge field is

[(Eo + Ep) + iEu] I2
E s : -iEq [_o__-i-_q + Eo)] (_)" (B.24)
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Next, we examine the time development of the space-charge field. In the short

writing time limit, i.e. shortly after illumination, N + will not change greatly from its

dark values (i.e. N + _ NA). Then eq. B.2 may be written as

ON+ - SI(ND - NA) -- n__ (B.25)
Ot rR '

with rR = 1/%NA. Substituting this in eq. B.1,

On _ SI(ND - NA) -- n___ (B.26)
Ot ra

Ox #nEst q Ox + I .

As we expect On�Or = O(n/rn,), whereas rd, is the dielectric relaxation time, for

illluminating times greater than a few rR we can then make the approximation that

rROn/Ot _ O. Also, for times short compared to rd., the space-charge field will not

change greatly and we may make the further approximation Esc _ Eo. Then eq. B.26

will reduce to

0 ,,_ rRS [Io + I2e -'K_ + c.c.] (No - NA)- (B.27)

k,T# O2n p [012 e_iKx_ + c.c.] ,
q Ox 2 q J

which, after equating the coefficients of e -ig_x, gives

1 + iEv/E.M "no (12) (8.28)
n2 = + ED/DM -- zEo/EM _o

EM + iEv .] (Is)= (EM+ED)-iEo no _ ,

with EM =-- 1/(graK_:). In eq. B.24, as N + ",_ NA, then we have for short time

N_ _ NA_{_ (_IND-- _-_R) t . (8.29)

So, from eq. B.4, and with NA, No - NA 2>>n , we have

OEs_ -q-(_-SIND) t'Oxe

which gives, by equating the coefficients of e -iKxx,

iq SI2 ND)E2 _ e--[_: ( _ - t.

(B.30)

(B.31)
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Therefore, combining eq. B.28 and eq. B.31 we have

[Eo-+-i(--E-£M + ED)J _ t (B.32)

EM [ ED -- i(Eo + Ep) 12

with rd, = e/(q#no). If we assume that the space-charge field builds up exponentially

such that

E2 : Es(1 - e -'')

_'_ ESqt

(B.33)

for the short time limit, then, comparing this with eq. B.31 and using eq. B.24, we

have

EM[ Eo+ i(Eq+ ED)] 1 (B.34)

1

Td,

1

Tdi

u_a
(1 + Eq)(1 + EM) + EqEM +

Eo) 2 + (1 + E_r_)2
EM ] EM ]

- --(rlR+irl, ).

E¢
_ kE_ _

AV EM ] .]

Therefore, we have a complex time constant for the material. Thus,

e-_ t _ e-t/reeiw9 t, (B.35)

with

and

Te_

rdi (I + EM] )__
-- Td i ------ ^

_E_zz
qR 1 + Eq)(1 -4- EE--_-_] +

M ] q M .J

_ Eo

_ q_ 1 E M -- Eq

O.)g __

Td, r_, (E_)2 + (I+EM___)2

In the following we define various time scales of the material:

(B.36)

(B.37)

1

TD =---#K_ED (diffusion time), (B.38)
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7E - _KxEo

TIc--

Tu,--

q#no

From the above definitions, we also notice that

(drift time due to external field),

(inverse of photoexcitation rate),

(recombination time),

(dielectric relaxation time).

ED "rn

E M 7"D

Eo T R

)

EM TE

ED TE

Eo TD

EM T_i

(B.39)

(B.40)

(B.41)

(B.42)

(B.43)

(B.44)

(B.45)

(B.46)
Eq TI

Then the material response time and the grating natural frequency can be expressed

in terms of these various time scales as

(1+ +
•v, "_ (B.47)

"re = Tdi 2

(1 + T_TTTTTTTT_TD're" (1-4-"D) + ('r_) (¢'-_/)

and

1 (,_)(,_-_,- l) (B.48)
COg _ 2"

Here we can see that COg= 0 when Eo = 0, i.e. the material time constant becomes

real when there is no applied field. Now we consider eq. B.33 as a solution for E2 of

a differential equation of the form

OE___!+ tiE2 = tiE s. (B.49)
Ot

With eq. B.34, the above equation can be rewritten as

OE2 (EM) [ Eo + i(Eq + ED)

1E s

(B.50)
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Using eq. B.46 we have

oF, [Eo+/(E,+E.)]
r,--_-- + [_i-_M_-_-D)jE2 (B.51)

= [_oo__i-_M-+_-)jE s.

From eq. A.32 of Appendix A we know that the grating is directly proportional to

E2. Thus we can write down the time equation for the grating as

OQ % . .
-_,-g?+ CQ : _C(AIA4 + A2A3), (B.52)

with

and

Eo + i(Eq + ED)

c = Eo+ i(EM + El))' (B.53)

iwfi 3 [(Eo + Ep) + iED]
% - 4c r_]f(-iEq) [E _ i_q _ E--_D)] (B.54)

iCOT/1
-- ei¢

2c

where

and

1 3 [(EoArEp)2ArE )]1/2 (B.55)

¢ = tan- 1 El)(Eq + ED) + Eo(Eo + Ep)] (B.56)
Eo Eq + Ep (Eq + ED) ]

When Eo = E v = 0, ¢ = 7r/2. Thus, 70 is real. From eq. B.52, this means that

when there is no external applied field, the grating does not have a natural oscillation

frequency and it is always 7r/2 phase shifted with respect to the interference fringes

of the optical fields. In addition, the response time is just inversely proportional to

the intensity.
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